PARTICLE ACCELERATION IN ASTROPHYSICAL SHOCKS ANDTHE ORIGIN OF COSMIC RAYSTHE ORIGIN OF COSMIC

Pasquale Blasi

INAF/Arcetri Astrophysical Observatory

SCINEGHE 2010 ‐Trieste, September 2010

CR Acceleration at shocks

TEST PARTICLE DIFFUSIVE SHOCK ACCELERATION

- **- POWER LAW SPECTRA**
- **- THE SLOPE IS ONLY DEPENDENT UPON THE COMPRESSION FACTORAT THE SHOCK**
- **- THE SPECTRUM FOR STRONG SHOCKS IS ASYMPTOTICALLY E-2**
- **- NO EASY WAY TO DETERMINE MAXIMUM ENERGY**
- BUT WHEN ESTIMATED USING THE GALACTIC D(E) → E_{MAX}~GeV

In general: R_d > H >> h
Particle escape

ASSUMPTIONS:

1.Instantaneous injection of particles in a point in the disc

- **2.Infinitely** thin disc, h \rightarrow 0 and infinitely extended disc, $R_d \rightarrow \mathbb{I}$
- **3. Free escape of the particles from above and below the halo** $n(z = \pm H, r, E) = 0$

$$
n_{CR}(E) = \int_{0}^{\infty} d\tau \int_{0}^{R_d} dr \, 2\pi r \, \frac{N(E) \, \Re}{\pi R_d^2} \, \Im(z = 0, r = 0, x = y = 0) = \frac{N(E) \, \Re}{2\pi D(E) \, R_d} \, \frac{H}{R_d}
$$

The Supernova remnant paradigm in numbers

Let us assume that the rate of SN in the Galaxy is $\mathscr R$ and each produces a **power law spectrum of protons N(E)=K (E/E 0)-**^γ **and we take E ⁰~m~1 GeV**

$$
E_{CR} = \int dE N(E) E = \frac{K}{\gamma - 2} = \xi_{CR} E_{SN} \implies K = (\gamma - 2) \xi_{CR} E_{SN}
$$

and energies are taken to be normalized to E₀.

Order 1051 erg

The observed spectrum of protons at Earth is and taking D(E)~(ρ **/3GV)** $^{\delta}$ **where** ρ **is the rigidity** $|$

$$
\phi_{CR}(E) \approx 2.4 E_{51} \xi_{CR} R_{d,15}^{-2} {\cal R}_{SN,30}(\gamma-2) 3^{\delta} E_{TeV}^{-2.73} TeV^{-1} m^{-2}s^{-1} sr^{-1}
$$

and com pg p arin g with the observed s pectrum

$$
\xi_{CR} \sim 7\% \text{ for } \delta = 1/3
$$

$$
\xi_{CR} \sim 11\% \text{ for } \delta = 0.54
$$

$$
\xi_{CR} \sim 58\% \text{ for } \delta = 0.7
$$

Relatively large efficiencies required

BEYOND TEST PARTICLES: *Non linear*

DSA Malkov, Berezhko & Voelk, Ellison et al, PB, Amato & PB…

Dynamical Reaction of Accelerated Particles

Conservation of Mass, Momentum and Energy +

$$
\frac{\partial f}{\partial t} = \frac{\partial}{\partial x} \left[D \frac{\partial f}{\partial x} \right] - u \frac{\partial f}{\partial x} + \frac{1}{3} \frac{du}{dx} p \frac{\partial f}{\partial p} + Q(x, p, t)
$$

Transport equation for cosmic rays

SHOCK HEATING and SPECTRA

PB, Gabici & Vannoni 2005

COSMIC RAY INDUCED MAGNETIC FIELD AMPLIFICATION

RESONANT GROWTH (, g , gg y) (Bell 78, Skillin g 75, La g a ge & Cesarsky 83)

Alfven waves grow in resonance with diffusing particles which resonantly scatter on them (growth and scattering are naturally on the same scale)

NON -RESONANT GROWTH

Bell 04 discussed a non resonant way to grow (non-Alfvenic) waves with λ <<gyration radius → no efficient scattering unless inverse **cascade**

Other instabilities (e.g. firehose) lead to λ**>>gyration radius (still non resonant)**

MAGNETIC FIELD AMPLIFICATION

Bell 2004, Amato & PB 2009

SMALL PERTURBATIONS IN THE LOCAL B-FIELD CAN BE AMPLIFIED BY THE SUPER-ALFVENIC STREAMING OF THEACCELERATED PARTICLES

Particles are accelerated because there isHigh magnetic field in the acceleration region

Sitocit

High magnetic field is present because particles Are accelerated efficiently

WITHOUT THIS NON-LINEAR PROCESS, NO ACCELERATION of cr to High energies (and especially not to the knee!)

Successes of the SNR paradigm 1. Observation of X-ray rims

TYPICAL THICKNESS OF FILAMENTS: ~ 10-2 pc

The synchrotron limited thickness is:

In some cases the strong fields are confirmed by time variability of X-rays Uchiyama & Aharonian, 2007

Chandra Cassiopeia A Chandra SN 1006

Successes of the SNR paradigm 2. Max energy and the knee

Successes of the SNR paradigm 3. evidence for a CR precursor ?

Successes of the SNR paradigm 4. Balmer dominated shocks

DOWNSTREAM

ION Temperature LOWER because of CR acceleration

NEUTRAL Temperature HIGHER because of charge exchange

BROAD BALMER LINE IS NARROWER

NARROW BALMER LINE IS WIDER

OBSERVATIONS OF BALMER DOMINATED SHOCKS

Shock speed from proper motion

$$
v_{\text{shock}} = 6000 \pm 2800 \text{ km/s} \left(\frac{d}{2.5 \pm .5 \text{ kpc}} \right) \left(\frac{\dot{\theta}_{\text{obs}}}{0.5 \pm .2 \text{ ' yr}^{-1}} \right) \rightarrow T_2 = 20 - 150 \text{ keV} \left(\text{no equilibration} \right)
$$

INFERRED EFFICIENCY of CR ACCELERATION 50-60% !!!

OBSERVATION OF BALMER DOMINATED SHOCKS *broader narrow Balmer line*

Sollerman et al. 2003

Broadening of the narrow line hints to a mechanism for heating of the neutrals upstream on scales shorter than ionization scales *TURBULENT HEATINGCHARGE EXCHANGE UPSTREAM*

Observation of Balmer dominated shocks:

Possible evidence for a CR precursor in the narrow Balmer line

A broadened narrow H α line from upstream shows that the **neutrals and ions have some level of charge exchange** Æ **different bulk velocities and/or T's between the two components** \rightarrow **CR precursor**

\blacktriangledown <u>(က</u> RXJ17

RXJ1713 with Fermi data

- **1. e/p Equilibration downstream? (Morlino et al. 2009)**
- **2.2. Very low value of K_{ep} at given time 3. Lines from non-equilibrium ionizations**
- **3. Lines from non-equilibrium ionization ? (Ellison et al. 2010)**
- **4. What are those Fermi data points telling us?**

W44 - an old SNR

IC443 – possible interaction with ^a mc

A Puzzling situation

- **Most SNR detected by Fermi have relatively steep spectra (some exceptions, such as RXJ1713)**
- **The predicted spectra would naively require steep diffusion D(E)~E0.7 in conflict with anisotropy measurements**

A *small print* in the theory of DSA?: **a p p py oint as important as poorly known**

$$
\tilde{u}(x)\frac{\partial f_i(x,p)}{\partial x} = \frac{\partial}{\partial x} \left[D_i(x,p) \frac{\partial f_i(x,p)}{\partial x} \right] + \frac{p}{3} \frac{d\tilde{u}(x)}{dx} \frac{\partial f_i(x,p)}{\partial p} + Q_i(x,p)
$$

Velocity of scattering centers in the shock frame NOT velocity of the plasma

In general the velocity of scattering centers is small and there is no problem

BUT •• AMPLIFIED MAGNETIC FIELD \rightarrow **high velocity ???**

$$
v_w = \frac{\delta B}{\sqrt{4 \pi \rho}} >> v_{A,0}
$$

VERY MACROSCOPIC CONSEQUENCES ON SPECTRA!

ROLE OF NUCLEI: The knee

Caprioli, PB, Amato 2010

WHERE DO GALACTIC CR end?

- **1. The SNR paradigm hints to a galactic CR spectrum ending at ~a few 10¹⁷ eV**
- **2. Observations of chemical composition also suggest th t de same tren**

Anisotropy of Galactic CR

 $\delta = 0.7$ Required Efficiency: ~ 50-60%

Anisotropy of Galactic CR

Anisotropy of Galactic CR

Conclusions

- **1. Non-linear DSA in (some) SNRs is reliably observed**
- **2. The SNR paradigm collects much circumstantial evidence**
- **3. But some p p roblems remain open**
	- **a. Steep gamma ray spectra**
	- **b.** $\,$ <code>NLDSA</code> predicts flat spectra unless v_w large
	- **c. Even in this case NLDSA leads to require** δ=**0.55**
	- **d. Anisotropy still seems problematic**
- 4. Note of caution n. 1: what we see at the Earth is a complex overlap **of many factors**
- **5. Note of caution n 2: SNR of type II the most frequent are also the n. 2: SNR II, most frequent, are ones which are harder to observe in gamma rays (low density)**