Acoustic detection of UHE neutrinos: status and perspective
Outlook

- Neutrino detection techniques
- Thermo-acoustic mechanism
- Event simulation
- Medium properties
- Transducers
- Test experiments
- Conclusions
Large Area Detectors for HE neutrinos

Optical Detection (ICECUBE-KM3NeT)
- Medium: Seawater, Polar Ice
- \(\nu_\mu \) (throughgoing and contained)
- \(\nu_e, \tau \) (contained cascades)
- Carrier: Cherenkov Light (UV-visible)
- Attenuation length: 100 m
- Sensor: PMTs
- Instrumented Volume: 1 km\(^3\)

Radio Detection (RICE, SALSA)
- Medium: Salt domes, Polar Ice
- \(\nu \) (cascades)
- Carrier: Cherenkov Radio
- Attenuation length: 1 km
- Sensors: Antennas
- Instrumented Volume: >1 km\(^3\)

Acoustic Detection (Prototypes)
- Medium: Seawater, Polar Ice, Salt Domes
- \(\nu \) (cascades)
- Carrier: Sound waves (tens kHz)
- Attenuation length: \(\sim \) 10 km
- Sensors: Hydro(glacio)-phones
- Instrumented Volume: >100 km\(^3\)

Em cascade

\(\nu_\mu \)

\(\mu \)

\(\nu_e \)
Basics of thermo-acoustics mechanism

A pressure wave is generated by the quasi-instantaneous heating of a macroscopic water volume in which a high-energy shower has developed.

Istantaneous deposition of heat through ionization

\[t_{\text{deposition}} \approx \frac{D}{c} \approx 10^{-7} : 10^{-8} \text{ sec} \]

Thermo-acoustic process:
increase of temperature (specific heat capacity \(C_p \)), expansion (expansion coeff \(\beta \))

\[t_{\text{expansion}} \approx 10^{-5} \text{ sec} \gg t_{\text{deposition}} \]

\[\nabla^2 p - \frac{1}{c_s^2} p = -\frac{\beta}{C_p} \frac{\partial \varepsilon}{\partial t}(r,t) \]

For a point like source (micropulse):

\[p(r,t) \propto \frac{E_0 \beta}{4\pi c_p} \frac{\partial}{\partial t} \delta \left(t - \frac{r}{c_s} \right) \]

Bipolar pulse
spherical expansion

For a shower heating a volume of matter (neglecting absorption and reflection):

\[p(r,t) \propto \frac{\beta}{4\pi c_p} \frac{\partial}{\partial t} \int \frac{1}{r} \varepsilon \ dV \]

Sum of pointlike sources:
wavefront and signal shape depend on the energy density distribution

Francesco Simeone INFN - Roma SciNeGHE, Trieste - September 8-10, 2010
Experimental proof of the thermo-acoustic mechanism

Brookhaven NL (Harvard, SLAC) 1979

200 MeV proton beam (LINAC)
Spill time 3 to 20 µs
Beam diameter 4.5 cm
Energy deposited in water $10^{19} \rightarrow 10^{21}$ eV
Bipolar pulses observed
Dependency on C_p, T and on beam diameter confirmed (about 10% uncertainty)

Recent measurements (2000’s)

ITEP Synchrotron: 100, 200 MeV p
$E = 10^{15} \rightarrow 10^{20}$ eV
Measured pulse amplitude increases linearly with E

Erlangen Laser Nd-YaG
$E = 10^{17} \rightarrow 10^{19}$ eV
Dependence on C_p confirmed
Coherent sound emission: angular dependency

Based on the Learned paper 1979

The simultaneous sound production along the shower results in a coherent emission in the plane perpendicular to the shower axis. The “pancake” is very collimated and the pulse changes as a function of angle both in amplitude and shape.
Simulations of neutrino interaction and shower propagation

Neutrino Interaction

- ANTARES (Erlangen, Marseilles)
- SAUND
- Ghandi et al.
- ACORNE
- ANIS (from Amanda)
- HERWIG + CORSIKA
- Neutrino shower simulator

Shower development

- Zheleznyk and Dedenko (e.m. shower including LPM)
- SAUND
- Hadronic
- Alvarez Muniz-Zas
- ANTARES (Marseilles)
- Hadronic + e.m.
- GEANT 4 + LPM

Similar results for CORSIKA

\(\nu' \) \(10^{19} \) eV

\(Z'_{\text{max}} \) vs. \(\log_{10} E (\text{GeV}) \)

ACORNE --

Pythia

ANIS --
Simulations of neutrino interaction and shower propagation

Shower development

ACORNE:
CORSIKA modified for water

Transverse and longitudinal energy deposits have been parameterized for fast simulations

Comparisons with GEANT:
~ 10% lower at peak
Showers broader

Comparison with NKG:
less energy at smaller radii
low frequency contribution enhanced

Absorption is mainly caused by chemical relaxation:

\[B(\text{OH})_3 \quad 50 \text{ Hz} - 5 \text{ kHz} \]
\[\text{MgSO}_4 \quad 5 \text{ kHz} - 500 \text{ kHz} \]

\[a_{\text{sound}} = \left(\frac{8\pi^2\kappa}{3\rho c_s^3} \right) f^2 \]

\(L_a \approx 10 \text{ km (at } 10 \text{ kHz)} \)

Sound velocity in water changes as a function of depth, temperature and salinity. Near the surface T and S contributions dominate while at large depth only the pressure contribution vary; so the sound velocity increases linearly with depth.

\[\rightarrow \text{refraction} \quad \frac{\Delta c_s}{\Delta z} = 1.65 \text{ cm/s/m} \]

pancake shape modification
Acoustic Noise in Water

Diffuse noise: Seismic, surface waves (wind), rain, thermal noise
Impulsive noise: Cetaceans, man made shipping and instrumentation

Knudsen’s Formula

\[P(f_{Hz}, SS) = 94.5 - 10 \log f^{5/3} + 30 \log(SS+1) \]
Study of the Medium Acoustic Properties : Polar Ice

Not a well known medium...Need accurate in situ measurements!

<table>
<thead>
<tr>
<th>scattering</th>
<th>absorption</th>
<th>speed of sound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rayleigh scattering at crystal boundaries → crystal size → frequency $\lambda_s \sim a^3 \times f^4$</td>
<td>molecular reorientation → energy loss in relaxation temperature dependent crystal size dependent</td>
<td>weak temperature dependence strong depth dependence only near the surface. Signal refraction is important near surface. pressure waves: $v_s = 3900$ m/s shear waves: $v_s = 2000$ m/s</td>
</tr>
</tbody>
</table>

Attenuation length is about 300m compared to expectation of kms. Further data analysis is going on.
Acoustic Noise in Ice

SPATS Measurements:

Noise is stable
Gaussian
Independent on weather conditions
No seasonal variation observed

Changes as a function of depth

Absolute value determination is not possible now due to change of glaciophone sensitivity with pressure and temperature.

Needs in situ calibration
Commercial Piezo Hydrophones (for deep sea)
There is a good number of companies expert in developing hydrophones for military and navigation instrumentation. Also ceramic available on the market to build hydrophones.

Commercial Hydrophones
factory calibrated:
→ piston test at 250 Hz, water pool test > 5 kHz (typical)
→ directionality pattern
sensitivity often changes with pressure (about 10 dB less at 3500 m)

High pressure Tests:
NEMO and NURC (NATO Undersea Research Centre)
developing a standard procedure for relative calibration under pressure

Hydrophone response at 0.1 and 300 bar (after several cycles)

Sensitivity -172 dB re V/ μPa

Measured differences ≤ ±2 dB

Measured variations ≤ ±1 dB
Transducers: Custom Sensors

The SPATS Module:
- 3 channels
- Piezoceramic
- Low noise preamplifier
- Precalibrated screw

sensitivity 2 V/Pa \rightarrow -114 dB re 1V/µPa

The AMADEUS Module:
- 3 channels
- Piezoceramic
- Acoustic sensor glued
- Built in preamplifier

Microscopic model of piezo and coupling
Solved using Finite Element Analysis

Results predictions using equivalent circuits

Needs investigation regarding the mechanical matching and the acoustic impedance at the interfaces
“Neutrino Pulse” Calibrators

Reliable neutrino signal calibrator: test array capability in reconstructing the ν event

ACORNE
Hydrophone excitation to produce bipolar signal (achieved)

Coherent signal from several hydros to get pancake shape (under development)

Portable Laser calibrator under study

ANTARES (Valencia)
Parametric Calibrator:
Transducers excited with $2 \sim 1$ MHz waves near the resonance of the emitter. It’s based on a non linear effect of the ceramic.

Bipolar kHz pulse proportional to V^2
Signal confined in narrow angles. First results are promising, further work is going on.
SPATS in ICECUBE Deployment and Operation

Measure ice properties:
attenuation length, wave refraction, noise

4 strings
7 stages per string
stage = 1 transmitter + 1 sensor

Instrumented depth 80m – 500m
surface digitization (200 / 400 kHz)
GPS phased array

String-D
100 m longer

Improved transmitters

Improved Glaciophones:
mechanical decoupling of sensor channels.

New HADES glaciophone:
Sensor design with sensors outside the steel housing
SAUND: Study of Acoustic Ultra-high-energy Neutrino Detection

Tongue of the Ocean

AUTEC
US NAVY facility

1100 m depth, hydrophones on seabed

SAUND 1: 6 Hydrophones - 7 km²
(signals digitized on shore 100 kHz, 12 bits)
15 days free run

SAUND 2: 56 Hydrophones - 1000 km²
(underwater digitization)
120 days DAQ (target 1 year)
Phased onshore. Sensitivity -186 (+50 gain) dB

Event vertex and energy reconstruction
Test with imploding light bulbs

SAUND 2
Ambient noise measured every minute
(input for adaptive matched filter)
Accurate background noise studies
Sea state contribution well separated

Triggered event analysis under study
AMADEUS: ANTARES Modules for Acoustic Detection Under the Sea

3 Acoustic storeys installed on ANTARES Instrumentation Line 07
3 Acoustic storeys installed on ANTARES Line 12 (connected)

Each storey has 6 hydrophones. Spacing between storeys 15 to 300 m
One storey of self-made hydros. Typical sensitivity: -145 dB re 1V/\mu Pa
Sampling (underwater) 200 ks/s 16 bits. ANTARES data transmission
Clock system for synchronisation of all acoustic sensors

Long term background investigation and its correlation with ambient.
Cross check with the ANTARES acoustic positioning system
Test for detection and event reconstruction algorithms
Studies of hybrid detection methods (optic and acoustic)
ACORNE: Acoustic Cosmic Ray Neutrino Experiment

QinetiQ /UK Navy facility at Rona (NW Scotland)
Low depth, noisy environment. Test for trigger and reconstruction

Depth: 230 m Area: 1.5 km x 200m
8 hydrophones ITC8201 (10 Hz : 65 kHz, -158 dB re 1V / μPa)
Sampling (onshore): 140 kHz, 16 bits

Hydrophone gain and sensitivity well balanced (proven with noise spectra)
Source reconstruction difficult (hydrophones movements not continuously monitored)

Data acquisition: 245 total day of unfiltered data

Raw Data Reduction: p, dp/dt, d²p/dt², Matched Filter

Single hydrophome analysis:
• Has to be a single – not part of a train
• Shorter that about 0.35ms
• No significant change in background before and after the pulse
• |Skewness| <0.5
• Kurtosis<5
BAIKAL

Infrastructure: BAIKAL NT200+ telescope and surface EAS scintillator array

Single Hydrophone

- Sensitivity -185 dB re V/ µPa
- Operating depth up to 1000m

Thetrahedral antenna / NT200+
- 4 ch. Sampled at 192kHz 16bit.
- Deployed at 150m
- Noise studies
- Event search

Bipolar pulse on 4 hydrophones

Angular distribution of bipolar pulses
(April-May 2009)
NEMO-OnDE: Ocean Noise Detection Experiment

Deployed at the NEMO Test Site 2000 m depth, 25 km offshore Catania. Next deployment in the framework of ESONET-LIDO demo mission. There is a Deep Sea Test Site facility available for R&D.

4 hydrophones

4 Reson TC4042 hydrophones (special production for 2500 m depth).

Low cost professional audio electronics (96 kHz, 24 bit sampling, ΔΣ)

Hydrophones synchronised and phased.

On-line monitoring and recording on shore. Recording 5’ every hour

Data taking from Jan. 2005 to Nov. 2006 (NEMO Phase 1 deployed).

Sea Noise measurement and modelling (presently under study)

Bioacoustics: study of sperm whales population in the East Med Sea

Test of triggers and reconstruction (limited size: 1m) algorithms under test (using also ACORNE software tools)
NEMO Phase II – Acoustic Positioning and Acoustic Physics

NEMO Phase II: Installation and operation of a tower in Capo Passero
8 floors, 32 Optical Modules, 400 m total height. Deployment 2011

Same electronics and DAQ and DAT as NEMO Phase I:
OM data synchronised and phased (about 1 ns resolution)

20 hydrophones for Acoustic Positioning …And for Acoustic Physics / Biology

→ Reduce costs and improve reliability of the tower acoustic positioning system
→ 400m long antenna for feasibility studies on acoustic detection
→ New pressure calibrated hydrophones (in collaboration with NATO)
→ New front-end electronics
→ Optical and acoustic data in the same data stream with the same time
 All signals are synchronous and phased
 It could be a compliant solution for KM3Net
NEMO Phase II – “Acoustic” Electronics Chain

“All data to shore” philosophy

data payload: 2 Hydros = 1 OM, fully sustainable

Hydros + preamps

OMs

ADC

Floor Control Module
Adds GPS Time
Send data to shore

Acoustic Data Server

On-Shore Floor Control Module
Data Parsing

Acoustic Physics / Biology

Acoustic Positioning

Hydrophones: Tested and calibrated for 3500 m
Preamp: 32 dB gain, 0.8 nV/√Hz input noise
ADC-board: 24 bits, 192 kHz sampling, 3 dB gain

Dynamic range > 90 dB [0 : 96 kHz] (to be improved)
Equivalent self noise
(-207 dB hydro) 35 dB re 1 μPa/√Hz [1:48 kHz]
(-201 dB hydro) 29 dB re 1 μPa/√Hz [1:48 kHz]

Present professional audio Σ-Δ ADC are noisy at f > 48 kHz

Acoustically and electrically noisy environment

Dynamic range > 90 dB [0 : 96 kHz] (to be improved)
Equivalent self noise
(-207 dB hydro) 35 dB re 1 μPa/√Hz [1:48 kHz]
(-201 dB hydro) 29 dB re 1 μPa/√Hz [1:48 kHz]

Complete DAQ chain tested
Simulations
Several reliable codes available for neutrino interactions and EAS in water / ice, and for acoustic wave formation

Medium properties (acoustic wave propagation, noise)
Water: well known, a deep sea site for a large installation would require further studies
Ice: requires better investigation
Other: Salt, Permafrost (R. Nahnhauser) interesting to investigate

Technological R&D:
Commercial Hydrophones available, can be calibrated as a function of pressure
Custom hydrophones reach good sensitivity, requires more investigation
“Synthetic neutrino pulse” emitters soon available

Test Sites:
Opportunity to test technology / software
Conclusions (part II)

Acoustic detection using the km3 Cherenkov telescope infrastructure:
Acoustic positioning system is required in water, use it also for acoustic physics. The target, in my opinion, at this early stage of the acoustic detection techniques, are the GZK neutrinos. Those are the “gold” combined opto/acoustic events, moreover an array of hydrophones could reconstruct the interaction vertex outside the optical instrumented volume allowing to better reconstruct the energy of the particle that cross only partially the detector.

Multidisciplinary activities
An underwater array of hydrophones at high depth is a unique opportunity for biologist, and geophysics communities (at least) => share the same infrastructure and manpower.

Personal Comment:
Though the studies on this technique are still in an early stage, its potential use to build very large neutrino detectors is appealing, thanks to the optimal properties of mediums such as water, ice or salt as sound propagator. It’s of fundamental importance to look for hybrid events (acoustic/radio/optic) to validate the techniques and to perform intercalibration of the detectors.
Just a raw idea: possible neutrino event calorimetry?

Acoustic system triggered by KM3NeT to reduce acoustic background (time and direction)

Acoustic Pulse:
Interaction vertex
Muon Range \rightarrow total muon energy

Cherenkov Light:
Muon direction
Muon energy loss in the detector