Recent Results from VERITAS

Season 2009/2010

Gernot Maier for the VERITAS Collaboration

HELMHOLTZ

Very Energetic Radiation Imaging Telescope Array System

array of four 12 m Imaging Atmospheric Cherenkov Telescopes
 located at the Fred Lawrence Whipple Observatory in southern Arizona
 US-led collaboration of ~85 scientists, 22 institutions in five countries

VERITAS Fall 2009 - Array Layout Optimization

August 2009: telescope relocation and improved mirror alignment

VERITAS Sensitivity

Data:

2009/2010: ~1180 h of observing (~15% in moonlight; 94% with 4 telescopes)

> Characteristics:

- angular resolution: r_{68%}<0.1°</p>
- energy range 100 GeV to 30 TeV
- energy resolution: ~15%

VERITAS Upgrades (2010-2012)

- > PMT replacement with high efficiency PMTs (Summer 2012, funded)
 - lower energy threshold (trigger threshold from 120 GeV \rightarrow 80 GeV)
 - improved sensitivity
- trigger upgrade (installation/commissioning Summer/Fall 2010, funded)
 - Iower energy threshold and improved CR event rejection
- drive update (study phase) shorter response time to GRBs, etc.

VERITAS: Astrophysics, Cosmology, Fundamental Physics

- > Extragalactic Science (GRBs, AGNs, Starburst Galaxies)
- > Galactic Science (SNRs, PWNs, Binaries)
- Search for Dark Matter

VERITAS Science with Extragalactic Objects

> Gamma-ray Bursts

- Search for afterglow emission
- highest priority in observing procedure

> Starburst Galaxies (M82)

Are SNRs the sources of charged cosmic rays?

- Nature 462, 770 (2009)
- > Radio Galaxies (м87, NGC 275)
 - Search for emission region of VHE photons
 - Science 325, 444 (2009)

> Blazars

- AGN population studies; Blazar sequence
- AGN emission mechanism and region; AGN states
- Constrain optical/IR extragalactic background light
- Fundamental physics (e.g. quantum gravity)

NASA/CXC/M.Weiss

Observations of AGNs with VERITAS

- ~700 h (incl. moonlight data) in 2009/2010
 - discovery; deep exposures of known sources (multiwavelength); ToO
- > 20 detections (10 discoveries); all with MW data
- > 4 VHE intermediate BL Lac
- > Target selection:
 - Fermi LAT / EGRET;
 - X-ray bright HBL & IBL
- > 2007-2009
 - Exposures on 49 X-ray selected AGN (~6 h each)
 - ~5σ 'stacked' excess

AGN	Туре	z	
M87	FR I	0.004	
Mkn 421	HBL	0.030	
Mkn 501	HBL	0.034	
1ES 2344+514	HBL	0.044	
1ES 1959+650	HBL	0.047	
W Comae	IBL	0.102	
RGB J0710+591	HBL	0.125	
H 1426+428	HBL	0.129	
1ES 0229+200	HBL	0.139	
1ES 0806+524	HBL	0.138	
1ES 1440+122	IBL	0.162	
1ES 1218+304	HBL	0.182	
RBS 0413	HBL	0.190	
1ES 0414+009	HBL	0.287	
PG 1553+113	HBL	0.34 < z < 0.47	
1ES 0502+675	HBL	0.341 ?	
3C 66A	IBL	0.444 ?	
PKS 1424+240	IBL	?	
VER J0521+211	Blazar	?	
RX J0648.7+1516	Blazar	?	

Gernot Maier | Recent Results from VERITAS | September 2010 |

 $(\mathbf{0})$

80

79 **Right Ascension (Deg)**

- ~5.5σ in 25 h 1.6% Crab
- X-ray bright HBL @ z=0.19
- brightest LAT extrapolation

VER J0521+211

- ~18σ in 15 h
- 4% Crab
- z=? (unsuccessful MMT, MDM, & IR efforts)
- bright flare (>20% Crab)

21

20

- ~5.5σ in 25 h
- 1.6% Crab
- X-ray bright HBL @ z=0.19
- brightest LAT extrapolation

VER J0521+211

- ~18σ in 15 h
- 4% Crab
- z=? (unsuccessful MMT, MDM, & IR efforts)
- bright flare (>20% Crab)

1ES 0502+675

- ~12σ in 30 h
- 5% Crab
- z≠0.341 (1h MMT exposure (10x sensitivity)

(Deg)

nation 17 Decli 16

15

14

13

102 101 **Right Ascens**

~5.5σ in 25 h

- 1.6% Crab
- X-ray bright HBL @ z=0.19
- brightest LAT extrapolation

VER J0521+211

- ~18σ in 15 h
- 4% Crab
- z=? (unsuccessful MMT, MDM, & IR efforts)
- bright flare (>20% Crab)

1ES 0502+675

- ~12σ in 30 h
- 5% Crab
- z≠0.341 (1h MMT exposure (10x sensitivity)

RX J0648.7+1516

2% Crab

■ z≠?

■ ~5.2σ in 18 h

Keck: Blazar

exposure (10x sensitivity)

VERITAS

Right Ascension (Deg)

Right Ascension (Deg

Gernot Maier | Recent Results from VERITAS | September 2010

220 219 218 Right Ascension (Deg

Mkn 421 monitoring

- long-term monitoring program
 Whipple 10 m / VERITAS
- major flares in 2008 & 2010
 - initiated large MWL efforts
 - spectral hardening with increasing flux
- > high in VHE & X-ray since 11/09
 - VHE & X-ray monitoring
 - 35 h of data; ~400σ
- > huge flare on Feb 17th 2010
 - variability on 5-10 min time scales
 - >10o per 2 minute bin

Mkn 421: SED Evolution

2006-2008: ~50 h VERITAS, 100 h Whipple

Quasi-simultaneous SEDs for 17 days (Δ_{X-ray} <0.15d; Δ_{opt} <1.5d, Δ_{radio} <3d) SSC works in all flare states for Mkn 421

Intermediate BL Lac Modeling: SSC or SSC+EC

> 3C 66A & W Comae - flare states

 SSC needs large unnatural emission region and very low magnetic fields

> PKS 1424+240 - steady flux state

SED: SSC works; no EC needed

borderline HBL?

- > PKS 1440+122 (analysis ongoing)
- > IBL: SSC+EC preferred
- > HBL: SSC works in all states

VERITAS Galactic Observations

Survey of the Cygnus region

Supernova Remnants and Pulsar Wind Nebula

Cas A, IC 443, SNR G106.3+2.7/PSR J2229+61114, G54.1+0.3, VER J2019+407, Tycho

> Binaries

LS I +61 303, 1A0535+262

- > Unidentified
 - HESS J0632+057

Survey of the Cygnus Region

Survey of the Cygnus Region

- 4 pre-defined cut-sets as on FOV and sensitivity.
- > depth: <3% Crab E>200 GeV [99% CL] for point-like sources

VER J2019+407 (coinc. with y Cygni)

> early survey follow-up candidate

- independent data set from Fall 2009 confirms new source with ~7.5σ
- Preliminary flux level >1 TeV: ~2-5% Crab
- Preliminary Extension: ~0.2° (Symmetric Gaussian Fit)

> Peak in NW of γ-Cygni

- distance 1.5-1.8 kpc
- Age 5-10 kyr

> VHE mechanism?

- PWN of PSR J2021+4026
- shock-matter interaction (but most matter to the SE)

> Multiwavelength picture

- white: Radio (4.865 GHz)
- black: optical (red-band)
- yellow star: Fermi pulsar (PSR J2021+4026)
- white dashed: SNR extend

Right Ascension (J2000) [Deg]

Tycho (G120.1+1.4)

- remnant of a Type Ia Supernova event of 1572
 - size: ~8 arcminutes
 - distance: 1.5-3 (5) kpc
 - bright x-ray rims and filaments interpreted as evidence for electrons up to 10 TeV
 - MWL expansion studies suggest entry into Sedov phase (slower expansion to the east might indicate interaction with a molecular cloud)
 - detailed x-ray morphology studies suggest efficient hadronic particle acceleration (Warren et al 2005)

> HE/VHE observations

- no detection by EGRET, no 1FGL sources nearby
- limits from Whipple, HEGRA, MAGIC (point source limit: J(>1TEV) <1.7% Crab [3σ])

Tycho - VERITAS results

> 67 hrs of observations

- 2007 and 2010
- mean zenith 38 deg
- > 5σ post-trials

(scan over area x2 area of remnant + 2 cut sets)

- > peak significance located close to molecular cloud
- > no strong statistical evidence for angular extension
- > flux level above 1 TeV: 1% Crab

smoothed VHE excess map

PRELIMINARY

black: X-ray (Chandra) purple: ¹²CO emission (FCRAO)

VHE Binaries

- > only variable galactic VHE sources known
- > particle accelerators operating under varying, but regularly repeating, environmental conditions; some have jets
- each system is unique and the population is increasing (Cyg X-1, Cyg X-3, LS 5039, LS I +61 303, PSR B1259-63, HESS J0632+057 (?))

LS I +61 303

compact object orbiting a BOVe companion (12.5 M_θ), 26.5 day, inclined orbit, e=0.54, circumstellar disk

- > extended radio structure; microquasar? (but radio images shows morphology change with orbital position)
- VHE emission near apastron (10-15% Crab, \$\phi=0.5-0.8\$) (MAGIC/VERITAS)
- Fermi/LAT: GeV emission peaks near periastron; 6 GeV cut-off; orbital modulation (but: not seen since 40% flux increase in 03/2009)
- GeV spectrum looks like a pulsar. But why modulated? Where are the pulses at other wavelengths?

LS I +61 303 in 2008-2010 - VERITAS results

2008/2009: 37 h of data, 3.4σ overall

2009/2010: 18 h of data, 0.8σ overall

LS I +61 303 in 2008-2010 - VERITAS results

HESS J0632+057 - a new VHE binary?

- discovered by H.E.S.S. in 2004/2006 (F=2.53, F(>1 TeV) ~3% CU)
- > only unidentified VHE point source (<2' extension)</p>
- Iocated in Rosette Nebula and Monoceros loop (young stellar cluster/molecular cloud, complex and SNR, distance 1.4-1.6 kpc)
- > coincident with massive star MWC 148 (spectral type B0pe (strong surface magnetic fields, fast stellar winds, large
 - mass loss rates))
- > optical data inconclusive (no binary system identified)

HESS J0632+057 - radio and X-ray data

- >faint point-like, variable radio source (<2" extension, 0.19-0.4 mJy, Skilton et al 2009)
- optical data inconclusive (no binary system identified)
- hard spectrum X-ray source (F~1.2-1.9)
- variable X-ray source (hours: XMM-Newton, weeks: Swift-XRT)
- > not detected by Fermi/LAT
- > What is it?
 - a new VHE binary? (see Hinton et al 2009)
 - an unusual isolated massive star (confined stellar wind model, Townsend set al 2007)

HESS J0632+057 - VERITAS results

- >30 h in Dec 2006 Jan 2009: not detected by VERITAS (ApJ 687 L94 (2009))
- > excluded with ~4σ confidence that HESS J0632+057 is a steady gammaray emitter
- > H.E.S.S./VERITAS campaign in 2009/2010
- > 8h in Oct 2009: no detection
- > 20 h in Feb/March 2010:
 clear detection (7.5 σ)
- > position in agreement with HESS J0632+057 and MWC 148
- > clearly variable in VHE gamma rays

1A0535+262 - Observations during a giant X-ray flare

- > HMXB, Be-star and X-ray pulsar (P_{Spin}=104s)
- > orbital period 110 d, eccentric orbit (e= 0.47)
- > distance 2.4±0.4 kpc
- > large magnetic field (~10¹³ G)
- > giant outbursts about every 5 years (October 1980, June 1983, March/April 1989, February 1994, May/June 2005)
- > VHE emission: Cheng & Ruderman mechanism; VHE maximum expected about 10-20 days after Xray flare (Orellana & Romero 2004)

But: no detailed modeling for VHE emission, no flux prediction, SED, etc.

1A0535+262 - VERITAS observations

- >Dec 2009: ToO triggered on flaring Be/ X-ray binaries
- > 23 hours of data with VERITAS
- high elevations: mean ~70°

- > good coverage of flare phase (rising/falling edge), apastron and periastron approach
- > flare occurred at best time for VERITAS

1A0535+262 - VERITAS results

- > early results; campaign just concluded
- 5-8 hours of VERITAS observations in each bin
- > no VHE emission detected
- > 99% flux upper limits above 300 GeV: 0.5-2% Crab Nebula flux
- Iots of data at other wavelengths available publication in preparation
- > definite measurement from current VHE instruments

Search for Dark Matter

- DM: ~25% of the energy budget of the Universe
- > mainly observed through its gravitational interaction
- > well-described by Weakly Interacting Massive Particles (SuSY, models with extra dimensions, etc):
 50 GeV ≤ mwimp ≤ 10 TeV
- > search for γ-rays from annihilation and decay of WIMPS
- > expected γ -ray flux proportional to squared DM density:

$$\frac{d\phi}{dE} = \frac{\langle \sigma v \rangle}{8\pi m_{\chi}^2} \left[\frac{dN(E, m_{\chi})}{dE} \right]_{DM} \boxed{\langle J \rangle} - \frac{\langle J \rangle}{\langle J \rangle} \sqrt{\langle J \rangle} = \int_{\Delta\Omega} d\Omega \int dl \rho^2(r(l))$$

- > observe astrophysical targets with high DM content
- > challenge: distinguish dark-matter / astrophysical γ-rays

Search for Dark Matter from Dwarf Galaxies with VERITAS

- Dwarf Galaxies are DM dominated (as revealed by star kinematics)
- Close (tens of kpc)
- high latitude objects and low gas content (low γ-ray background)
- > tidal disruptions can make DM content estimation difficult

dSph	distance [kpc]	Exposure [hrs]	Zenith angle [⁰]	Energy threshold [GeV]	Signi- ficance [σ]	Flux limits (95%) [cm ⁻² s ⁻¹]	Astrophysical factor <j> [GeV²cm⁻⁵]</j>	
Draco	80	18.4	26-51	340	-1.5	0.5x10 ⁻¹²	NFW: 1.53x10 ¹⁸	
Ursa Minor	66	18.9	34-46	380	-1.8	0.4x10 ⁻¹²	NFW: 2.68x10 ¹⁸	
Boötes 1	62	14.3	14-29	300	1.3	2.2x10 ⁻¹²	Model by Martinez: 1.15x10 ¹⁸	
Willman 1	38	13.7	19-28	320	0.0	1.2x10 ⁻¹²	NFW: 8.43x10 ¹⁸	
Segue 1	hary 23	27.7	16-33	300	-1.1	0.3x10 ⁻¹²	Einasto: 1.16x10 ¹⁸	
prem								

ApJ 720, 1174 (2010)

Search for Dark Matter from Dwarf Galaxies with VERITAS

- > particle physics model need for computation of γ -ray fluxes
- > choice of composite DM annihilation spectrum that represent the average yield of γ-rays for neutralino annihilation in pMSSM models: BR (XX→bbbar) = 0.9 and BR(XX→ττ)=0.1:

Uncertainty: ±1 order of magnitude due to systematics in halo modeling

Limits from VERITAS on annihilation crosssections: ~10⁻²³ cm⁻³s⁻¹

Summary

- > array layout optimization highly successful (1% of Crab in <30h)
- > upgrade of cameras and trigger ongoing (low energies)
- VERITAS has made most-sensitive measurements of ~20 AGN

all AGN studies have simultaneous MWL data for SED modeling

- > detections of several galactic objects:
 - Tycho: historical Type 1a SNR
 - γ-Cygni: new VHE-emitting SNR in sky survey
 - Cas A, IC 443, G106.3+2.7, G54.1+0.3, ...
 - HESS J0632+057: a variable point-source in the Galaxy

> non-detections:

- LS I +61 303 (2008-2010): together with Fermi/LAT measurements a bit puzzling
- IA 0535+262: definite measurements at VHE of a X-ray binary during a giant outburst

Gamma-ray Bursts Observations with VERITAS

- > most luminous events in the Universe
- > >100 GeV γ -rays expected:
 - long-lived afterglows models: blazar-like SEDs
 - Fermi/LAT: GeV photons after powerful GRBs
 - delayed X-ray flares detected by Swift
- > VERITAS: GRBs have highest priority
 - socket connection to GCN network
 - Fermi (GBM/LAT)/AGILE/Swift/Integral trigger
 - observe if <3h old and zenith <70°</p>
 - ~30 h / year of GRB observations
- >40 GRBs observed; no detection
 - best ΔT ~ 90s
 - study of drive upgrade to improve slew speed

Gamma-ray Bursts Observations with VERITAS

- > most luminous events in the Universe
- > >100 GeV γ-rays expected:
 - long-lived afterglows models: blazar-like SEDs
 - Fermi/LAT: GeV photons after powerful GRBs
 - delayed X-ray flares detected by Swift
- > VERITAS: GRBs have highest priority
 - socket connection to GCN network
 - Fermi (GBM/LAT)/AGILE/Swift/Integral trigger
 - observe if <3h old and zenith <70°</p>
 - ~30 h / year of GRB observations
- >40 GRBs observed; no detection
 - best ΔT ~ 90s
 - study of drive upgrade to improve slew speed

