

Gamma-ray from 3C 454 and LBL

V.Vittorini on behalf of the AGILE AGN WG Trieste September 2010

Name	Affiliation
A. Bulgarelli	INAF-IASF Bologna
A.W. Chen	INAF-IASF Milano
F. D'Ammando	INAF-IASF Palermo
I. Donnarumma (<i>Co-Chair</i>)	INAF-IASF Roma
A. Giuliani	INAF-IASFMilano
F. Longo	INFN Trieste
L. Pacciani	INAF-IASF Roma
G. Pucella	ENEA Roma
E. Striani	INAF-IASF Roma
S. Vercellone (<i>Chair</i>)	INAF-IASF Palermo
V. Vittorini	INAF-IASF Roma & Univ. Tor Vergata

AGILE γ -ray and X-ray data analysis

 $M-\lambda$ programs coordination

 $M-\lambda$ data analysis

Proposals and science cases

Papers, Conferences, Workshops

Weekly telecons

Inter-play with other WGs

Calibration duties

SW development and testing

ASDC support

Variability close the "three" peaks in LBL

The recent super-flare of 3C 454

Some considerations

3C 454

AGILE AGN WG

Ghisellini et al. 2007

Slope variation in X-ray appear moderate to respect other bands!

PKS 0537-441

Pucella et al. 2010

Pian et al. 2007

Long-term X-ray and γ -ray data show a moderate harder-when-brighter spectral trend for 3C 454.

Swift/XRT

AGILE/GRID

Vercellone et al., 2010, ApJ, 712, 405

But if only electron injection-acceleration works strong softer-when-brighter trend results!

Moreover, some variations in the blue bump are involved in FSRQ.

D'Ammando et al., 2010, A&A, in preparation

PKS 1510-089 – March 2009 campaign

Swift/UVOT and GASP-WEBT observations show the presence of thermal signatures in the optical-UV spectrum with variations.

Vercellone et al., 2010, ApJ, 712, 405

3C 454.3 – October 2008 campaign

Low γ -ray state: the thermal disc contribution becomes prominent and shows variations.

Variability close the "three" peaks in LBL

The recent super-flare of 3C 454

Some considerations

Striani et al., 2010, ApJL, Submitted on Feb. 02, 2010

3C 454.3 underwent the most dramatic γ -ray flare, reaching a γ -ray flux of about 2000E-8 ph cm⁻² s⁻¹, 2.5 times brighter than the Vela Pulsar.

Photon index:

pre-flare = 1.85±0.26

flare = 1.66 ± 0.32

post-flare = 2.04 ± 0.26

Four Spectral Energy Distributions have been performed to study the pre-flare (5-day integration time centered on MJD 55162.4), flare (1-day centered at MJD 55167.7), 2nd flare (2 days centered at MJD 55172.7), post-flare (5.5 -day centered at MJD 55180) behavior of the source.

Two models have been adopted for the super- and II-flare: one zone SSC+EC, two zones SSC+EC; the 2nd electron population has been added to account for the hardness of the gamma-ray. It is likely related to additional particle acceleration and/or plasmoid ejection near the jet basis.

Lower B, slightly higher γ_{break} and slightly higher Disk are requested!

Variability close the "three" peaks in LBL

The recent super-flare of 3C 454

Some considerations

Optical activity in FSRQ are due to moderate injection-acceleration of electrons into the jet, γ <400 is involved to avoid the not observed softer when brighter trend.

Some growth of the accretion rate is requested in γ -ray and X-ray activity to reproduce the observed harder when brighter trend.

Some growth of the bulk Lorentz factor Γ with slightly lower B is also compatible with the observed spectral trend in FSRQ flares.