Measuring polarization at gamma-rays with Fermi

Rolf Buehler, Bill Atwood, Michael Kuss, Francesco Longo, Leon Rochester, Mattia Sormani, Tracy Usher for the Fermi LAT collaboration

SCINEGHE 2010 Trieste

Why?

One of the science goals of LAT since the beginning, as Polarization contains information about magnetic field and gammaray production.

Brightest Fermi sources have potentially polarized emission:

- *Pulsar* : curvature radiation, phase and location dependent (Vela)
- Pulsar Wind Nebula : synchrotron radiation (Crab)
- Active Galactic Nuclei : proton synchrotron radiation or Inverse Compton radiations (3C 454, 3C 279)

 \rightarrow Models not very specific yet (to my knowledge), this is the time!

How?

Pair production cross section

$$d\sigma = \frac{-2\alpha Z^2}{(2\pi)^2} \frac{r_0 m^2}{\omega^3} dE d\Omega_+ d\Omega_- \frac{E(\omega - E)}{|\bar{q}|^4}$$

$$\times \left\{ 4 \left[E \frac{\sin \theta_- \cos \psi}{1 - \cos \theta_-} + (\omega - E) \frac{\sin \theta_+ \cos(\psi + \phi)}{1 - \cos \theta_+} \right]^2 - |\bar{q}|^2 \left[\frac{\sin \theta_- \cos \psi}{1 - \cos \theta_-} - \frac{\sin \theta_+ \cos(\psi + \phi)}{1 - \cos \theta_+} \right]^2 - \omega^2 \frac{\sin \theta_-}{1 - \cos \theta_-} \frac{\sin \theta_+}{1 - \cos \theta_+}$$

$$\times \left[\frac{E}{(\omega - E)} \frac{\sin \theta_+}{\sin \theta_-} + \frac{(\omega - E)}{E} \frac{\sin \theta_-}{\sin \theta_+} + 2 \cos \phi \right] \right\}$$

$$|\bar{q}|^2 = -2[E(\omega - E)(1 - \sin \theta_+ \sin \theta_- \cos \phi - \cos \theta_+ \cos \theta_-) + \omega E(\cos \theta_+ - 1) + \omega(\omega - E)(\cos \theta_- - 1) + m^2]$$

G. Depaola 1999, 2000

Azimuthal modulation

Cross-section complex. Past Studies typically made $\Phi = \pi$ Approximation (no recoil)

Simple diagnostic variable, *asymmetry ratio*:

 $R \equiv \frac{\text{Ne+e- (parallel in } \Delta \psi)}{\text{Ne+e- (orthogonal in } \Delta \psi)}$

Can it be resolved?

Multiple scattering

$$\theta_{MS} = \frac{13.6}{E_{\gamma}/2} \sqrt{X} (1 + .038 \ln(X))$$

 θ_{MS} in mrad, E_{γ} in GeV, X in rad. Len.

X_{tungsten} = 0.028

 $X_{silicon} = 0.004$

Tracker resolution

Minimum angle which can be resolved between two trackers (pitch=0.228 mm):

 $\theta_{Min} \approx 0.4 \text{ deg}$

Can it be resolved?

Requirement: e+ e- direction better measured than opening angle

No for typical tungsten conversion

Yes between ≈50-200 MeV for silicon conversions (Idea from Bill Atwood)

Sensitivity estimate

From Vela we get ≈200000 events/year between 50-200 MeV

 \rightarrow 20% polarization detectable after 20 month at 3 sigma

(analysis far from optimal, but no background and trial factors considered)

Current status & Outlook

Polarization measurement possible with the LAT down to ~10% polarization level for bright sources.

Status:

- Francesco Longo modified Geant 4 in Fermi simulations, validation
- Improved detection of silicon conversion
- Unpolarized simulations show azimuthal asymmetries in the detector on 5% level. Major challenge.
- No look into data yet (keep analysis blind)

 \rightarrow Measurement possible, expect results in near future.