Electron Spectrum measured by PAMELA

Giovanna Jerse
(INFN - Trieste)
on behalf of the PAMELA collaboration
Outline

- The PAMELA space experiment
- Electron spectrum measurement
 - Two different approaches
- Conclusions
PAMELA Collaboration

Italy
- Bari
- Florence
- Frascati
- Naples
- Rome
- Trieste
- CNR, Florence

Germany
- Siegen

Sweden
- KTH, Stockholm

Russia
- Moscow
- St. Petersburg

Giovanna Jerse
Scineghe2010
PAMELA experiment

Payload for Antimatter/Matter Exploration and Light-nuclei Astrophysics

→ Direct detection of CRs in space
→ Main focus on antiparticles component
Orbit characteristics

- Low-earth elliptical orbit
- 350 - 610 km
- Quasi-polar (70° inclination)
- SAA crossed
- 16 Gigabytes transmitted daily to Ground-NTsOMZ Moscow

Giovanna Jerse Scineghe2010
PAMELA apparatus

Time-Of-Flight
plastic scintillators + PMT:
- Trigger
- Albedo rejection;
- Mass identification up to 1 GeV;
- Charge identification from dE/dX.

Electromagnetic calorimeter
W/Si sampling (16.3 X_0, 0.6 λ_I)
- Discrimination e^+ / p, anti-p / e^- (shower topology)
- Direct E measurement for e^-

Neutron detector
3He tubes + polyethylene moderator:
- High-energy e/h discrimination

Magnetic Spectrometer
microstrip silicon tracking system + permanent magnet
It provides:
- Magnetic rigidity $\rightarrow R = pc/Ze$
- Charge sign
- Charge value from dE/dx

GF: 21.5 cm2 sr
Mass: 470 kg
Size: 130x70x70 cm3
Power Budget: 360W

Giovanna Jerse
Scineghe2010
Electron spectrum measurement
Electron identification

Statistics:
• Analyzed data July 2006 - January 2010 (~1130 days)
• Collected triggers >10⁹
• Identified ~ 6 10⁵ electrons between 1 and 200 GeV

Electron identification:
• |Z|=1 (dE/dx=MIP) → SPE & ToF
• β=1 → ToF
• rigidity (R) → SPE
• charge sign separation → SPE
• e-/p-bar separation → CALO

• ~ no background, issues:
 - spillover protons at high energy
 - spectrometer resolution
 - selection efficiencies
Electron spectrum, methods

Two independent energy measurements:

- **Rigidity from Tracker**
- **Energy from Calorimeter**

 possibility to cross-check the energy measurement
Electron spectrum, methods

Two different approaches:

1) Tracker-based selection
 - strong track quality requirements
 - loose calorimeter selection
 - energy measured by the tracker

2) Calorimeter-based selection
 - loose track quality requirements
 - negative charged particle
 - strong calorimeter selection
 - energy measured by the tracker
Electron spectrum - tracker-based

Negatives tracks with $E > 20 \text{GeV}$

Number of events

Data

Electrons

p simulation

Spillover Protons

Deflection [GV$^{-1}$]

20 GeV 50 GeV 100 GeV

Giovanna Jerse

Scineghe2010
Electron spectrum - tracker-based

• Event selection: topology of the shower

Longitudinal profile topological variable

Transversal profile topological variable

100 - 200 GeV, simulations

Giovanna Jerse
Scineghe2010
Electron spectrum - tracker-based

Negatives tracks with $E > 20\text{GeV} +$ electron selection

- Data
- Electrons
- Proton simulation

Residual spillover proton contamination

Giovanna Jerse Scineghe2010
Energy measurement by the tracker

Rigidity from Tracker
- bremsstrahlung above tracker
- decreasing energy resolution

\[\text{e}^{-} \quad 1.8 \text{ GV} \]

\[\gamma \quad \text{e}^{-} \]

\[\sim 1.2 \text{ GV} \quad \sim 0.6 \text{ GV} \]

Giovanni 2010
Unfolding (or deconvolution)

Real energy particle spectrum

Instrumental effect (energy loss, energy resolution, ...)

Measured energy particle spectrum

Bayesian Unfolding Procedure

Giovanna Jerse Scineghe2010
Energy measurement

Energy from Calorimeter

- sampling calorimeter + dead areas
- increasing energy resolution
Electron flux - calorimeter-based

Transversal and dead areas leakage:
strong containment conditions

Longitudinal leakage:
Integrate a longitudinal fit of the shower

Giovanna Jerse Scineghe2010
Electron spectrum

Flux $\mathrm{GeV}^{3.0}$ $(\mathrm{s} \, \mathrm{sr} \, \mathrm{m}^2 \, \mathrm{GeV})^{-1}$

- Tracker-based
- Calorimeter-based

Preliminary

Giovan
Negative Electron spectrum

PAMELA Electron Flux

$E^3 \times \text{Flux GeV}^{-2} (m^2 \text{sr s GeV}^{-1})$

10^3

10^2

10

Energy (GeV)10^3

Preliminary
Conclusions

PAMELA has been in orbit and studying cosmic rays for \(~1500\) days. \(>10^9\) triggers registered, and \(>20\) TB of data has been down-linked.

We present the electron spectrum measured by Pamela in the energy range 0.5 - 500 GeV.

Electron spectrum analyses based on different approaches with different systematics are in agreement.

Analysis ongoing to finalize the electron spectrum.

Giovanna Jerse

Scineghe2010
Thank you

http://pamela.roma2.infn.it/index.php

Giovanna Jerse

Scineghe2010