

Balbo et al. A&A, in press, arXiv: 1007.1970

H.E.S.S. Galactic Plane

(Chaves, H.E.S.S., 2009 ICRC)

H.E.S.S. Galactic Plane

(Chaves, H.E.S.S., 2009 ICRC)

- Elongated shape: (12±3)' x (3.6±2.4)' semi-axes
- Flux > 200 GeV = $(28.7\pm5.3) \times 10^{-12}$ ph cm⁻² s⁻¹ ~ 12% Crab Nebula
- Positional coincidence:
 - hard X-ray source IGRJ16320–4751 above 15 keV (Tomsick et al. 2003)
 INTEGRAL & XMM-Newton observation 2-10 keV (Rodriguez et al. 2003)
 - soft X-rays ASCA source AX J1631.9-4752, ASCA Galactic Plane Survey (Sugizaki et al. 2001)

XMM-Newton detection:

- 9 observations
 from august to
 september 2008,
 ~90ks.
- In each
 observation the
 source is not
 visible, but it
 appears in the
 final mosaic

600

200

XMM-Newton detection: 9 observations from august to september 2008, ~90ks. 3 In each observation the source is not visible, but it appears in the final mosaic 600 / 200 IGR J16320-4751 AX J1632.8-4746 XMMU J163219.9-474731 **HMXB** Massive Star Massive Star

MGPS-2 @ 843 MHz (Murphy et al. 2007)

- Rms sensitivity ~ I-2 mJy/beam
- Excess count ~ 16 mJy/beam
- Source size: 35" x 26" ~ beam
- Total flux density ~ 25 mJy

- Rms noise ~ 12 mJy/beam
- Resolution: 10.4'
- Upper limit ~ 100 mJy

(Duncan et al. 1995)

Infrared: GLIMPSE & MIPSGAL

MIPSGAL: MIPS, onboard Spitzer (Carey et al. 2009)

 λ : 24 and 70 μm

- Point source sensitivity ~ 2 and 75 mJy (3σ)
- Resolution ~ 6" and 18"
 - No evidence for a diffuse emission corresponding to the diffuse X-ray source

GLIMPSE: (Benjamin et al. 2003)

IRAC instrument

Point source sensitivity $\sim 0.2 - 0.4 \text{ mJy} (5\sigma)$

Discussion

Match in position between the radio excess and the extended X-ray source.

- The **TeV centroid** The line is the result of $v^{(Hz]}$ is the result of the HESS source lies within the extended XMM source.
- XMM-Newton + HESS spectra:

two spectral bumps matching the expected synchrotron and inverse Compton emission of a PWN.

synchrotron and inverse Compton emission of a PWN.

Assuming that the same electron population is responsible for the synchrotron and IC emission: $f_{sync} / f_{IC} \Rightarrow B \sim 3 \mu G$

Unidentified HESS sources:

(Matthew Dalton for the HESS collaboration, Paris conference 2010:TeV Particle Astrophysics)

•	HESS J0632+057		
•	HESS J1023-575	\rightarrow WR 20a; Westerlund 2; RCW 49	
•	HESS J1303-631		
•	HESS J1427-608		
•	HESS J1614-518		
•	HESS J1616-508	→ PSR J1617-5055 ?	
•	HESS J1626-490		
•	HESS J1632-478	→ IGR J16320-4751 ?	
•	HESS J1634-472	→ IGR J16358-4726 ?; G337.2+0.1 ?	
•	HESS J1640-465	→ G338.3-0.0 ?; 3EG J1639-4702 ?	
•	HESS J1702-420		
•	HESS J1708-410		
•	HESS J1713-381	→ CTB 37B (G348.7+0.3) ?	
•	HESS J1714-385	→ CTB 37A	
•	HESS J1718-385	→ PSR J1718-3825 ?	
•	HESS J1745-290	→ SgrA*/ChanPWN?	
•	HESS J1745-303	→ 3EG J1744-3011 ?	
•	HESS J1804-216	→ G8.7-0.1 / W30 ?; PSR J1803-2137	?
•	HESS J1809-193	→ PSR J1809-1917 ?	
•	HESS J1813-178	→ G12.8-0.02; AX J1813-178	
٠	HESS J1834-087	→ G23.3-0.3 / W41?	

Unidentified HESS sources:

(Matthew Dalton for the HESS collaboration, Paris conference 2010:TeV Particle Astrophysics)

- HESS J0632+057
 - HESS J1023-575 \rightarrow WR 20a; Westerlund 2; RCW 49
- HESS JI 303-631
- \bigcirc HESS J1507-622 → miss low energy emission
- \blacksquare HESS J1848-018 → W 43 / MC / WR 121a ?
- HESS J1745-303 → 3EG 1744-3011 ?
- \bigcirc HESS J1741-302 → MC / PWN powered by PSR B1737-30

(Tibolla et al. 2009 Fermi Symposium)

• HESS J1813-178 \rightarrow G12.8-0.02; AX J1813-178

• HESS J1834-087 → G23.3-0.3 / W41?

Summary & Conclusion

- Broadband studies of HESS J1632-478 have identified this source as a likely PWN, with X-ray observations providing images of an extended nebula as well as the putative pulsar powering the system.
- The models used to reproduce the data require a B~3µG and yield an approximate age of 20 kyr and È ~ 10³⁶d₃^{1.5} erg/s, consistent with expectations for the late-phase evolution of a PWN.
- HESS sources lacking clear low energy counterpart could represent ancient PWNs or MCs illuminated by CRs from nearby SNRs.