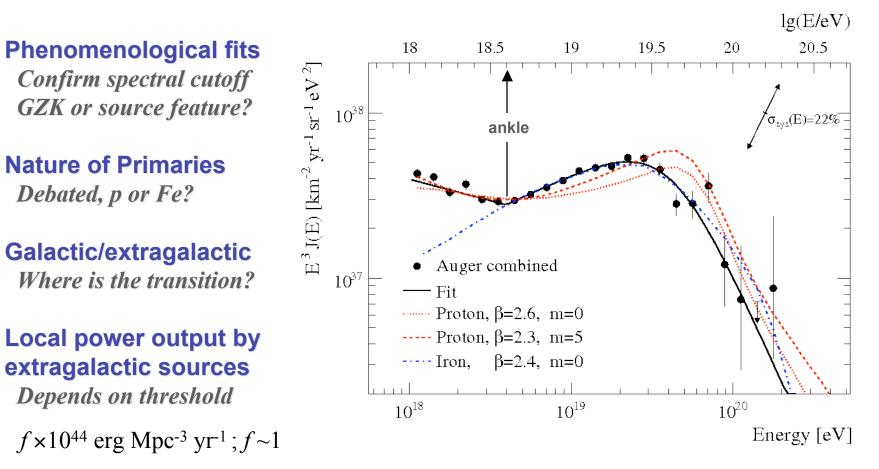
γ rays, cosmic rays and v's from Astrophysical Sources

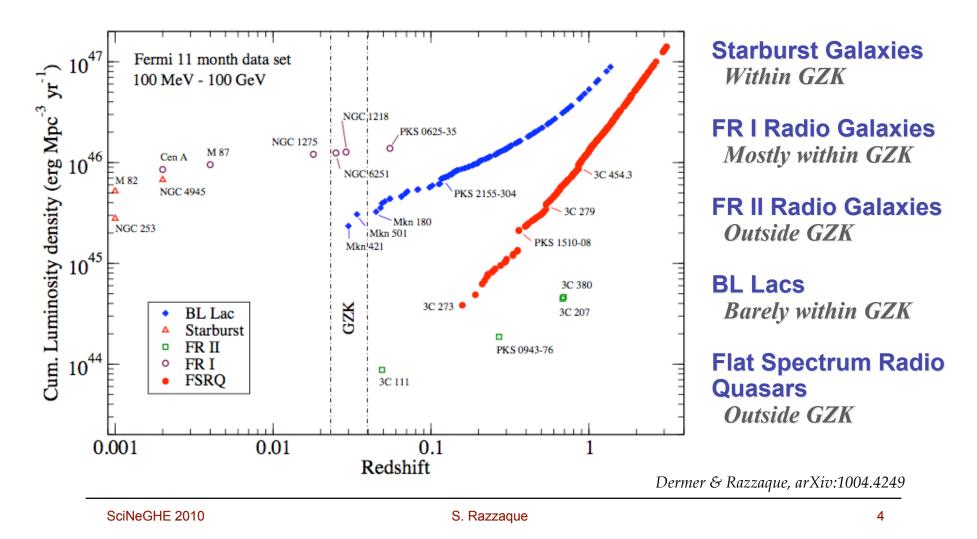
Soebur Razzaque

U.S. Naval Research Laboratory, Washington, D.C.


National Research Council

SciNeGHE 2010, September 8-10, Trieste, Italy

Ultra-High Energy Cosmic Ray Power


The energy spectrum measured by Auger and HiRes

Auger Collaboration 2010

Astrophysical Source Candidates - I

Non-thermal (>100 MeV) power output measured by Fermi LAT

Astrophysical Source Candidates - II

Cumulative power (> 10 keV) output from Gamma Ray Bursts

Back of the envelope calculation

- ★ Total electromagnetic energy release per GRB: $10^{51}E_{51}$ erg
- Observed GRB rate ~ 2 Gpc⁻³ yr⁻¹ at $z \sim 1-2 \rightarrow -0.2$ Gpc⁻³ yr⁻¹ at $z \sim 0$ beaming corrected rate $\sim 100 f_{\rm b}$ times higher
- * γ ray power output ~ $10^{51}E_{51}$ erg × $100 f_{\rm b}$ × 0.2 Gpc⁻³ yr⁻¹ ~ $2 \times 10^{43}E_{51}f_{\rm b}$ erg Mpc⁻³ yr⁻¹
- ◆ Detail calculation using luminosity density function gives ~1-10 times this number

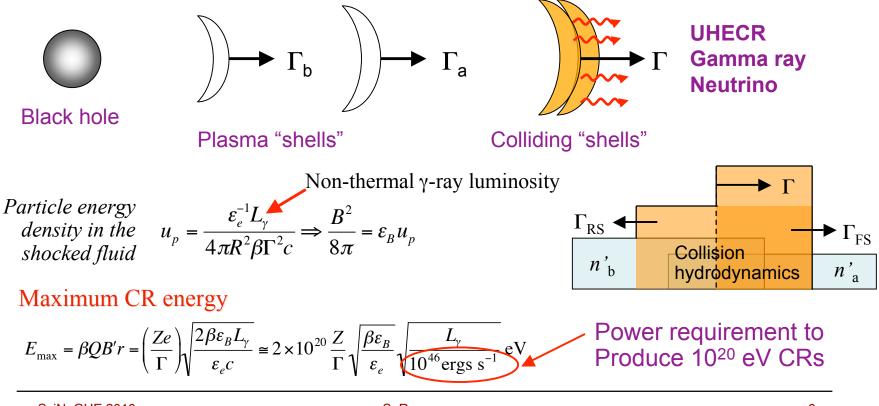
A few caveats

- * Total non-thermal power output may be smaller if most keV MeV emission is thermal, and Fermi LAT is dominated by non-thermal emission
- Time delay due to scattering by intergalactic magnetic field

$$\Delta t_{CR} \approx 2 \times 10^5 Z^2 B_{nG}^2 E_{40 \text{EeV}}^{-2} d_{200 \text{Mpc}}^{3/2} \lambda_{1 \text{Mpc}}^{3/2} \text{ year}$$

Effectively increases the GRB rate within GZK volume by $(0.2)^3 \Delta t_{CR}$

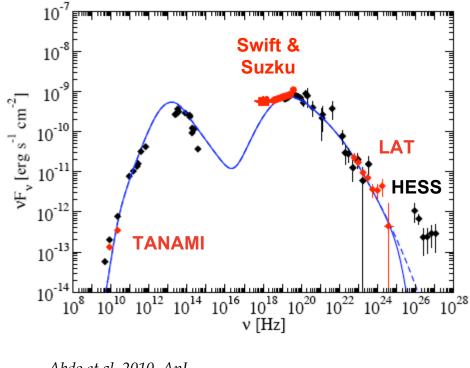
Large baryon loading, 10-1000, seems required for GRBs to be UHECR sources


Dermer & Razzaque, arXiv:1004.4249

Eichler, Guetta & Pohl, arXiv:1004.4249

Acceleration to 10²⁰ eV

Acceleration to 10²⁰ eV requires large magnetic field - Fermi mechanism
Collision between two plasma "shells" ejected by a black hole "central engine"


- → Relativistic forward & reverse shockwaves plough through the "shells"
- → Plasma instabilities, turbulent motion generate magnetic field
- → Charged particles (*test particle*) are accelerated in the induced electric field

Which sources can accelerate to 10²⁰ eV?

Radio galaxies, blazars

Abdo et al. 2010, ApJ

One-zone SSC model of the SED

Extract model parameters *Jet Doppler factor, bulk Lorentz factor Magnetic field, jet power*

Use these parameters to calculate maximum cosmic ray energy

Acceleration time = variability (dynamic) time

$$E_{\text{max}} \approx 4 \times 10^{19} \frac{Z}{\phi} \left(\frac{B}{6.2 \,\text{G}}\right) \left(\frac{t_v}{10^5 \,\text{s}}\right) \delta_D \left(\frac{\Gamma_j}{7.0}\right) \,\text{eV}$$

Acceleration time

= synchrotron cooling time

$$E_{\text{max}} \approx 6 \times 10^{20} \sqrt{\frac{Z}{\phi}} \left(\frac{A}{Z}\right)^2 \left(\frac{B}{6.2 \,\text{G}}\right)^{-1/2} \left(\frac{\Gamma_j}{7.0}\right) \text{eV}$$

SciNeGHE 2010

Which sources can accelerate to 10²⁰ eV?

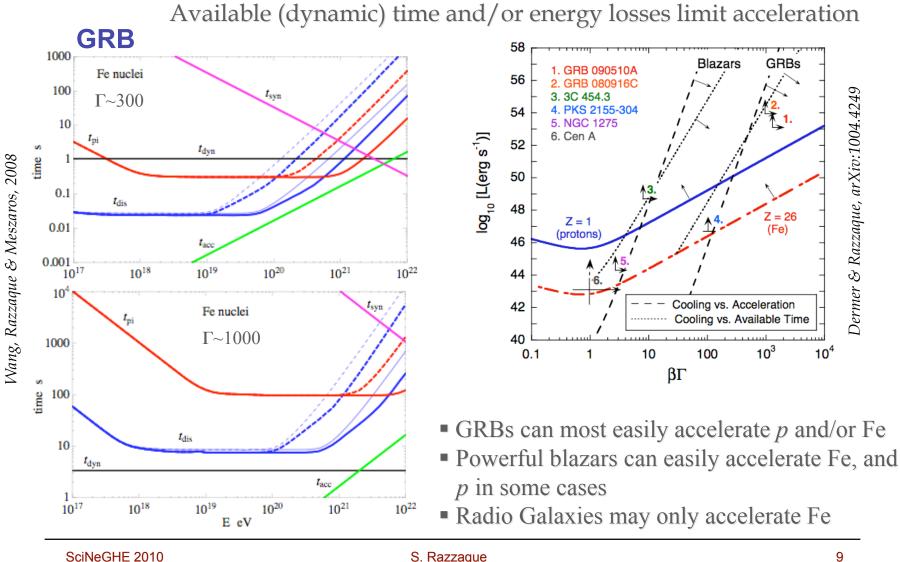
Gamma Ray Bursts

Fermi has discovered/confirmed exciting new features

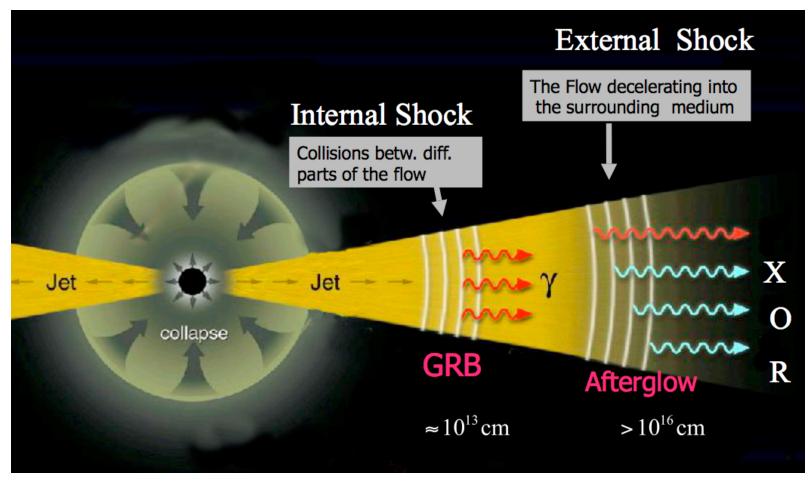

- Delayed onset of high-energy emission
- Additional hard power-law component
- Extended high-energy emission

Profound effects on emission modeling

Very high jet bulk Lorentz factor


Calculated from $\gamma\gamma \rightarrow e^+e^-$ pair production opacity argument for ≥ 10 GeV photons from GRBs detected with Fermi LAT

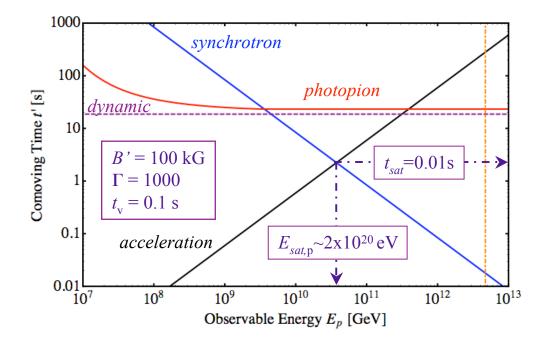
Minimum jet bulk Lorentz factors of bright Fermi LAT GRBs


$$\tau_{\gamma\gamma}(E) = \frac{3}{4} \frac{\sigma_T d_L^2}{t_v \Gamma} \frac{m_e^4 c^6}{E^2 (1+z)^3} \int_{\frac{m_e^2 c^4 \Gamma}{E(1+z)}}^{\infty} \frac{d\epsilon'}{\epsilon'^2} \ n\left(\frac{\epsilon' \Gamma}{1+z}\right) \varphi\left[\frac{\epsilon' E(1+z)}{\Gamma}\right]$$

Which sources can accelerate to 10²⁰ eV?

UHECR signatures in GRB emission

Rees, Meszaros, Piran and others ... "standard GRB model"


Synchrotron emission by shocked electrons for prompt and afterglow emission

UHECR signature in GRB emission

UHECR acceleration in magnetic field and interactions may provide γ ray signature from GRBs, specially in *Fermi* LAT

- Synchrotron radiation and associated e⁺e⁻ cascade radiation
- *Photohadronic interactions with observed keV MeV γ rays and cascade emission*

Very high jet bulk Lorentz factor reduces photohadronic cooling

Synchrotron Radiation from GRB Jets

Particle acceleration in the forward shock *B* field
Cooling is dominated by synchrotron radiation in the same *B* field

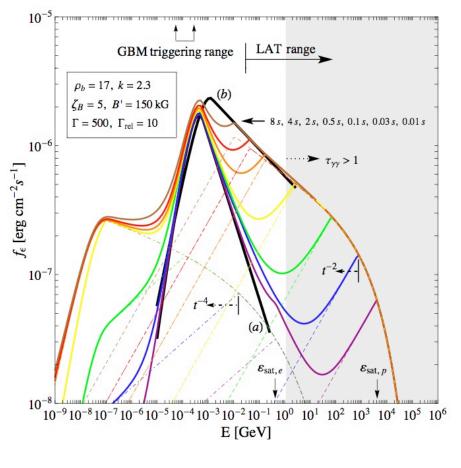
□ Fast cooling $\gamma_m > \gamma_c$ or $\nu_m > \nu_c$; Slow cooling $\gamma_m < \gamma_c$ or $\nu_m < \nu_c$ □ All break frequencies evolve with time as the *B* field (and Γ) does

Synchrotron radiation in GRB prompt phase

Fermi LAT emission (>100 MeV) modeled by proton-synchrotron radiation from a coasting (constant bulk Lorentz factor) GRB fireball

- Synchrotron radiation by proton and associated e⁺e⁻ cascade from γγ
- Accumulation of protons cooling in time build-up flux in LAT

Can explain delayed emission in LAT


 Requires large (~10²-10³ × γ rays) energy budget

Consistent with large baryon load

requirement for UHECRs from GRBs

 Narrow (1/Γ) jet opening angle can help by reducing actual energy release

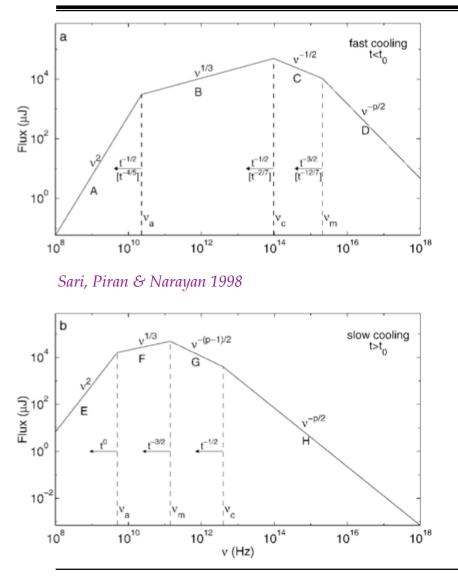
GRB 080916C

Razzaque, Dermer & Finke, arXiv:0908.0513

GRB Afterglow

Adiabatic blast wave decelerating in uniform density medium Blandford & McKee 1976

• Relationship between t, Γ and R: $R = 2\Gamma^2 act(1+z)^{-1}$


• Deceleration time: $t_{dec} \approx 1.9(1+z)(E_{55}/n)^{1/3}\Gamma_3^{-8/3}$ s Total KE in blast wave = swept-up material a = 1 for coasting a = 4 after decel.

• Bulk Lorentz factor: $\Gamma \approx 763(1+z)^{3/8} (E_{55}/n)^{1/8} t_s^{-3/8}$

• Blast wave radius: $R \approx 1.4 \times 10^{17} (1+z)^{-1/4} (E_{55}/n)^{1/4} t_s^{1/4} \text{ cm}$

- Energy injection rate in the forward shock: $e_{shock} = 4\pi n m_p c^2 \Gamma^2$
- Magnetic field in the FS: $B' \approx 300(1+z)^{3/8} \varepsilon_B^{1/2} (E_{55} n^3)^{1/8} t_s^{-3/8} G$

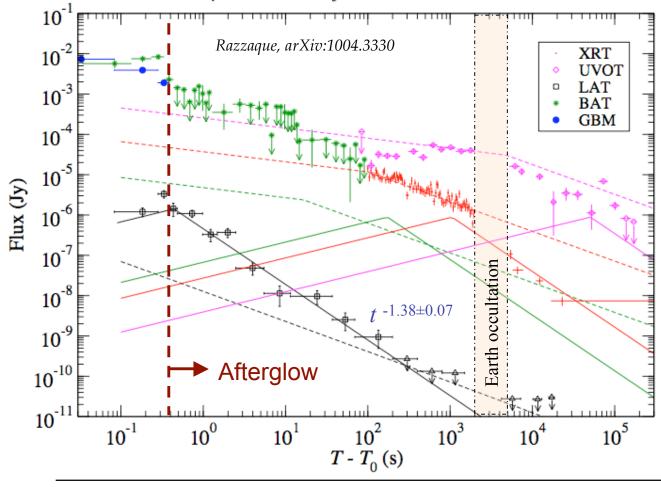
Synchrotron Radiation in Afterglow Phase

Fast cooling : $v_m > v_c$

 $F_{\nu} \propto \nu^{-\beta} t^{-\alpha}$ closure relations

$$v_c < v < v_m : F_v \propto v^{-1/2} t^{-1/4}$$

 $v > v_m > v_c : F_v \propto v^{-p/2} t^{-(3/4)(p-2/3)}$


p-particle spectral index : $\frac{dN}{dE} \propto E^{-p}$

Slow cooling : $v_c > v_m$ $F_v \propto v^{-\beta} t^{-\alpha}$ closure relations $v_m < v < v_c : F_v \propto v^{-(p-1)/2} t^{-(3/4)(p-1)}$

$$v > v_c > v_m : F_v \propto v^{-p/2} t^{-(3/4)(p-2/3)}$$

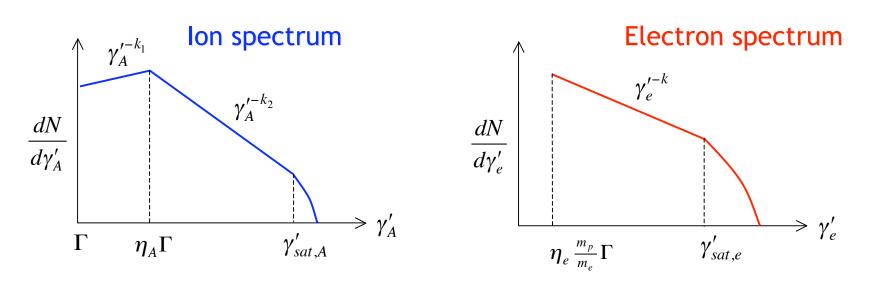
GRB 090510: Leptonic-Hadronic Model

Multi wavelength light curve in γ ray, x ray and UV fitted with *p*- and *e*- synchrotron radiation from afterglow

Smooth power-law evolution of the fluxes indicate their origin from afterglow

p-synchrotron radiation (solid) produces >100 MeV LAT data

e-synchrotron radiation (dashed) produces XRT and UVOT data


Requires ~100 times more energy in the jet than in observed g rays

SciNeGHE 2010

Leptonic-Hadronic Synchrotron Model

Both electrons and ions are accelerated in the Forward shock

- Total isotropic-equivalent jet energy : $E_{k,iso} > E_{\gamma,iso} \cong 10^{53} \text{ ergg}$
- Constant density surrounding medium : $n_{\rm ISM} \approx 1 {\rm ~cm^{-3}}$
- Jet deceleration time scale : $t_{dec} \le 1$ s and $\Gamma_0 \ge 1000$

- Crucial parameters: ε_B ; η_A , η_e , k and k_2 are fitted from data
- Fraction of jet energy: ε_A and ε_e are calculated from required spectra

 $\geq \Gamma_{\min}$ (from $\gamma\gamma$

Opacity calculation)

Modeling GRB 090510 Multiwavelength Data

Use closure relations $F_{\nu} \propto \nu^{-\beta} t^{-\alpha}$ to determine β and k or k_2 Note: *e*-synchrotron model alone cannot satisfy the closure relations

 \Box XRT light curve: $t^{-0.74\pm0.03}$ in between ~100 s and 1.4 ks

 \Box Model with *e*-synchrotron in the fast-cooling and for $v_{XRT} > v_{m,e} > v_{c,e}$

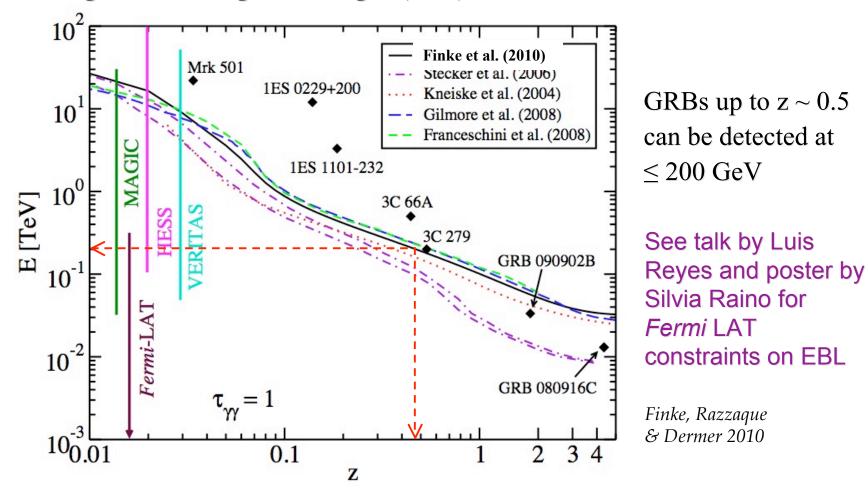
$$\Box k = (4/3)\alpha_{\rm XRT} + 2/3 = 1.65 \pm 0.04 ; \beta_{\rm XRT} = k/2 = 0.83 \pm 0.02$$

 \Box LAT light curve: $t^{-1.38\pm0.07}$ in between ~0.3 s and 100 s

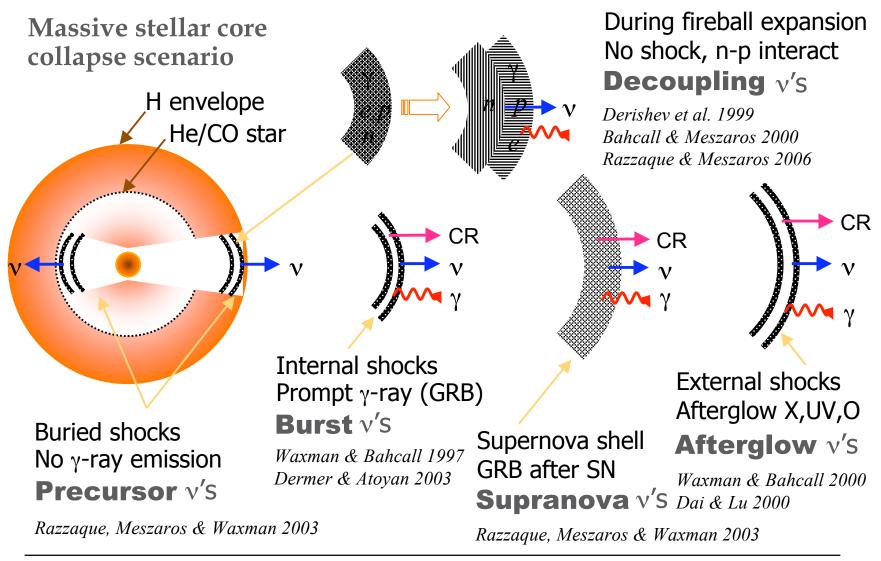
 $\Box \text{ Model with } p \text{-synchrotron in the slow-cooling and for } \nu_{m,p} < \nu_{LAT} < \nu_{c,p}$ $\Box k_2 = (4/3)\alpha_{\gamma} + 1 = 2.84 \pm 0.09 \text{ ; } \beta_{\gamma} = (k_2 - 1)/2 = 0.92 \pm 0.05$

□ β_{γ} needs to be compatible with measured LAT photon index (and it is) □ Parameters such as n_{ISM} and Γ_0 are mainly constrained by $t_{\text{dec}} \le 0.3$ s □ Parameters such as $E_{\text{k,iso}}$, ε_{B} , η_e , η_p are set to produce required fluxes □ Parameters ε_e , ε_p are calculated from other parameters and constrained <1 □ UVOT light curve is constrained by XRT (*e*-synchrotron)

□ BAT light curve can not be fitted → continued central engine activity


GRB 090510: TeV Signature

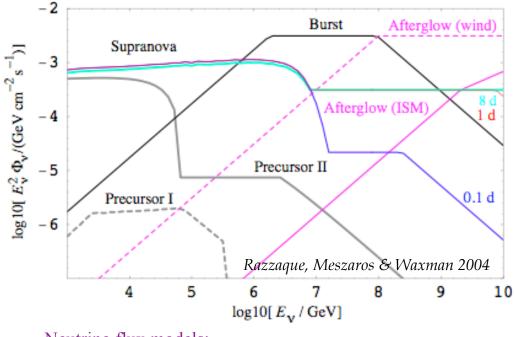
Opacities for yy pair production and photopion production for maximum energy particles $T - T_0$ (s) → synchrotron photons 10^{3} 10^{2} 10^{1} 10^{0} are targets for $\gamma\gamma$ and $p\gamma$ 10^{0} → maximum *e*-sync. Opacity photon ~100 GeV 10⁻¹ \rightarrow maximum *p*-sync. photon >1 TeV 10^{-2} \rightarrow yy pair production 10⁰ e - synchrotron can only be marginally p - synchrotron Opacity $p_{\rm Y}$: protons important 10^{-1} Ground-based 10⁻² detectors can probe 10^{2} 10^{3} 10⁴ 10^{1} Energy $(E_{\gamma,sat}/\text{GeV}), (E_{p,sat}/\text{EeV})$ *p*-synchrotron model


SciNeGHE 2010

Detectability of >100 GeV γ rays

Extragalactic Background Light (EBL) limits distance of the source

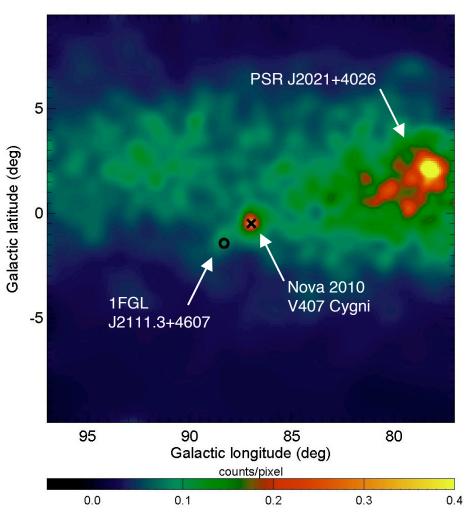
High-energy Neutrinos from GRBs


High Energy GRB v Detection Prospects

- □ Neutrinos are very weakly interacting → only 10⁻⁶ probability at ~TeV energy
- □ UHECRs need to interact with soft photons in the GRB to make v's → high opacity

Nearby (z < 0.5) bright GRBs with high variability ($\sim 1 ms$) are the best bet candidates for neutrino telescopes

Projected v events for IceCube		
Flux model	\mathbf{v}_{μ}	$v_e + v_\tau$
Precursor II (H)	4.1	1.1
Burst/prompt	3.2	0.3
Afterglow (ISM)	-	-
Afterglow (wind)	0.1	-
Supranova (~1 d)	13	2.4


GRB 030329/SN 2003dh Typical long duration GRB with bright SN $\sim 10^{51}$ ergs/s luminosity at redshift z = 0.17

Neutrino flux models: Dai & Lu 2000 (afterglow wind) Razzaque, Meszaros & Waxman, PRL 2003 (supranova) Razzaque, Meszaros & Waxman, PRD 2003 (precursor) Waxman & Bahcall 2000 (afterglow ISM) Waxman & Bahcall 1997 (burst/prompt)

SciNeGHE 2010

Fermi LAT Discovery of Nova in V407 Cygni

March 10, 2010

- Fermi LAT found the nova in routine LAT processing for transients
- □ Initially, counterpart was unknown
- □ Later developments established:
 - First γ-ray detection of any nova
 - First clear γ-ray detection of *any* source associated with a white dwarf (in binary system)

Cheung et al, ATEL 2487

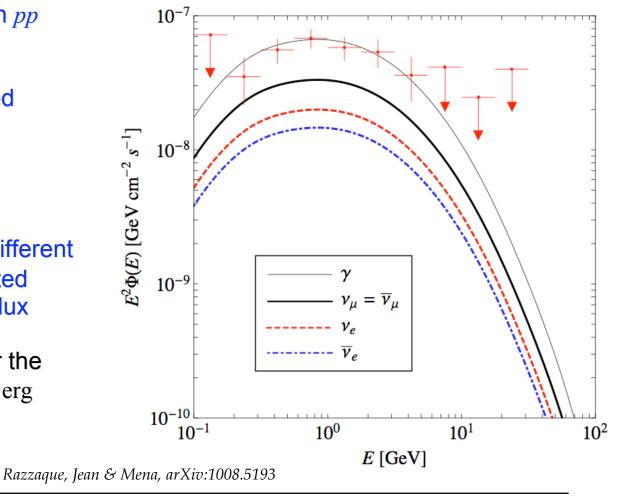
Fermi LAT publication: Science, **329**, 817 (2010)

See talk by Teddy Cheung for details of *Fermi* LAT γ-ray data

SciNeGHE 2010

10 GeV v's from V407 Cygni?

Adopt the π^0 model for γ rays


- $\square \quad \pi^{\pm} \text{ are also produced in } pp \\ \text{ interactions}$
- Neutrinos are produced through decays

 $\pi \mathop{\rightarrow} \nu + \mu$

 $\rightarrow e + v + v$

- Expected ν fluxes of different flavors can be calculated using observed γ-ray flux
- □ 10 GeV v fluence over the transient lifetime $\sim 10^{-4}$ erg ≥ 100 MeV γ ray fluence $\sim 3 \times 10^{-3}$ erg cm⁻²

 γ ray and ν spectra (15 day average)

SciNeGHE 2010

Neutrino Oscillation

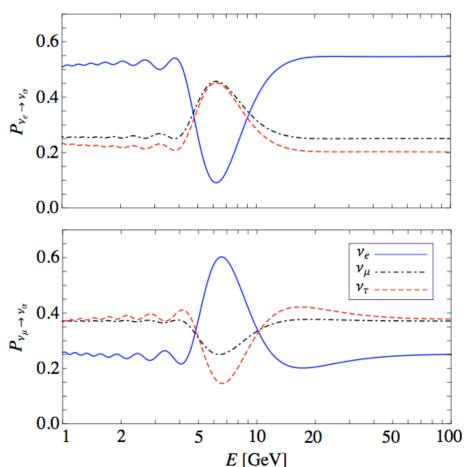
Creation and detection of v's at separate places allow them to change their "flavors" from creation to detection

- $\hfill\square$ v's are created with definite flavors
 - α = *e*, μ , τ
- \Box v's propagate with definite mass states i = 1, 2, 3
- α and *i* states are mixed while propagation in vacuum and in matter (*Mikheyev-Smirnov-Wolfenstein effect*)
- □ neutrinos are mostly affected by matter for normal mass hierarchy $m_1/m_2 < m_3$
- □ antineutrinos are mostly affected by matter for inverted mass hierarchy $m_1/m_2 > m_3$

SciNeGHE 2010

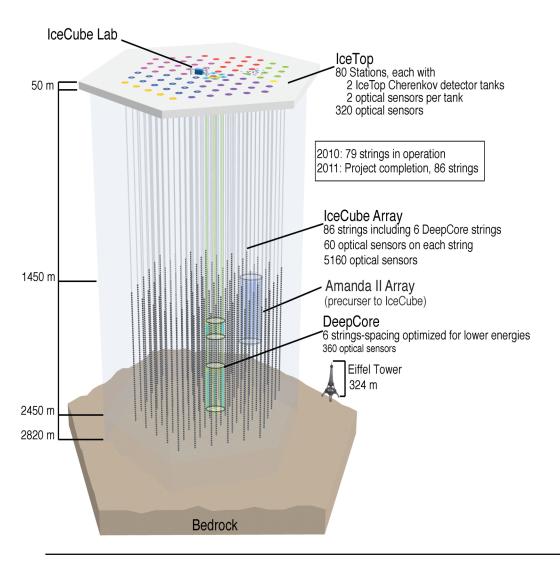
Conversion of ν fluxes at Detectors

ν flavor conversion probability in vacuum and inside the Earth


$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sum_{i} P_{\nu_{\alpha} \to \nu_{i}}^{\text{src}} P_{\nu_{i} \to \nu_{\beta}}^{\oplus}$$
$$= \sum_{i} |U_{\alpha i}|^{2} |\sum_{\eta} A_{\beta \eta}^{\oplus} U_{\eta i}|^{2}$$

e.g., Razzaque & Smirnov 2010

Detail calculation depends on


- V407 Cygni direction (DEC = 45.7°)
- v oscillation parameters
- Earth's density profile model
- v flux at a detector at the South Pole looking "down"

$$\Phi_{\nu_{\alpha}}^{\text{det}} = \Phi_{\nu_{\mu}}^{\text{src}} P_{\nu_{\mu} \to \nu_{\alpha}} + \Phi_{\nu_{e}}^{\text{src}} P_{\nu_{e} \to \nu_{\alpha}}$$

Numerical calculation

IceCube Deep Core Sub Array

≥10 GeV ∨ Detector at the South Pole

- 13 "strings" at the core of the IceCube array
- 6 strings with closely spaced (7-10 m) HQE digital optical modules
- \square allow detection of ν 's
 - down to ~10 GeV
- □ Detection volume ~10 Mt

Fully operational and taking data since ~31st March, 2010

ν events at 10 Mt Deep Core from V407 Cyg

Neutrino-nucleon interactions in the detector volume produce a detectable muon (electron and tau as well)

$$\begin{split} N_{\nu_{\alpha}} &= \frac{N_{\mathrm{T}} t}{V_{\mathrm{det}}} \int dE_{\nu} \int d\Omega \ V_{\mathrm{eff}}(E_{\nu},\Omega) \\ &\times \left[\sigma_{\nu}^{\mathrm{cc}}(E_{\nu}) \Phi_{\nu_{\alpha}}^{\mathrm{det}}(E_{\nu},\Omega) + \sigma_{\bar{\nu}}^{\mathrm{cc}}(E_{\nu}) \Phi_{\bar{\nu}_{\alpha}}^{\mathrm{det}}(E_{\nu},\Omega) \right] \end{split}$$

$$N_{\nu_{\mu}} \approx 0.5^{+4.4}_{-0.4} , \ N_{\bar{\nu}_{\mu}} \approx 0.3^{+2.3}_{-0.2} ; \ 10 \le E_{\nu}/\text{GeV} \le 100$$

Atmospheric background in ~15 days

 $N(\mathbf{v}_{\mu}) + N(\overline{\mathbf{v}_{\mu}}) \sim 60 \ (\Delta\theta \sim 10^{\circ})$ $\sim 160 \ (\Delta\theta \sim 30^{\circ})$

- Depends on angular resolution
- Can be smaller if most v's come within <15 days

Summary

□ We have explored best-bet sources of UHECRs

□ Total power output in local universe within GZK volume required for observed spectrum

□ *Radio galaxies, BL Lacs and Starburst galaxies*

Gamma Ray Bursts with large baryon loading

□ Total power per source for acceleration to 10²⁰ eV

Gamma Ray Bursts easily accelerates p and Fe

□ *Most blazars can accelerate p and Fe*

□ *Radio galaxies may only accelerate Fe*

 \square We also explored γ ray emission from UHECRs from GRBs

- □ May explain >100 MeV radiation detected with Fermi LAT
- □ Requires large baryon loading, energetically less favorable

□ High-energy neutrinos from UHECRs in GRBs

□ May be detectable from nearby GRBs

□ > 0.1 GeV neutrinos are expected from the Nova 2010 in V407 Cygni

 \Box *If* observed γ rays are created by π^0 decays

 \Box Test of leptonic vs. hadronic model of γ ray production