The ROOT framework

done by other software run in physics:
Event generation and detector simulation
Data Acquisition

Data Storage
Data Analysis

It permits an easy
management of large-scale
experiments with many
subsystems involved.

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0

Utilities / Services of ROOT

Using low-level C++ calls ROOT can retrieve data stored on
memory of sent by the DAQ.

Save Data

ROOT provides a data structure (called tree) that is
extremely powerful for fast access of huge amounts of data
much faster than accessing a normal file

Access Data

ROOT trees spread over several files can be chained and
accessed as a unique object, allowing for loops over huge
amounts of data.

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 2

Utilities / Services of ROOT

ROOT has powerful mathematical and statistical tools are
provided to operate on your data. Fitting and random
number generation are its strongpoints.

Show Results

Publication-quality histograms, scatter plots, fitting functions,
etc. may be shown and adjusted real-time.

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 3

3 ways of using ROOT

ROOT can be coded interactively:

Just like a command-line interpreter, e.g. Bash.
This mode uses the CINT syntax.

You_ can write macros that — /ﬁ";'"if‘f}' e
are interpreted by CINT e
frorm an ascil W
ROOT programs can be e, [Magies || Graphic Use
. . and Interface
Complled in for Programs|| (Gul)

better performance.

Command Line
Interpreter
\ (CINT)

AR
Tt
G terwam 3V i
g]
nm e
itien
.-
e ppe——
s
L el

G.Giavitto - ROOT tutorial @ scrm—ort -
Sept. 6th, 2010 "0

Architecture

Sept. 6th, 2010

PTOGram

L J

Maln progRm
lecter

UNSTRUCTURED PROG

program

-

main program

levkes
*
Y

J

module module
dester +clestery eleiter +elertery

;/ \\
E'LLm_lLlLCLI E'LLI_'.GJLILL-,_,I E'LLL';CLILILL-?I

>

MODULAR PROGRAM

prograrm

Main program
)

pmmdurell

procedu re,

p rncedumgl

RAM
PROCEDURAL PROGRAM
progLam

v

~
ohject
dama | ™ — | DBject
\ dafa
RN -7
object
data
ol
r 4
objech
data
J

OBJECT ORIENTED PROGRAM

G.Giavitto - ROOT tutorial @ ScInEGHE

"10

Terminology in OO program

Example: TH1F is the class defining a ROOT 1-D histogram
with floating-point (32 bits) values.

Object: the instance of a class

To define an histogram, one declares it as
TH1F hist;

Method: a function of the class
Example: hist.Draw() calls the funcion that draws.
Member: data structure stored in the class

Inheritance: the class “is the daughter” of another, and

Inherits some of its mother's members

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 6

Class inheritances for TH1F

TObject

TNamed
TAttLine

TObject

KMoCoaLesibs L koD ol reis
lord o US|
rasloroniy
i
faobioctstat
KBl namsk

Cannulﬂu_k

Exciulc
ExeculnEvant
Baint Fal ol

rop Findobjocl

S Tobjoet

TALtFill
TAttMarker
TArray

TNamed
ratsa rile

Esutier

SelrisrneTile
SciTille

TAttLine

FLnswidth
rorsa

Seruinecoior
et
SCLLinowidt
=i rs

Setlinestyle
SErUnSE

\
sl Mc. i
At ResstAttiine

I AEELIne DSttt Hh T S s

TAtEF
raisn fRillStyic

el bures CGenlicolor

Seralidold SerEilSryie

TAtEMarker
Frasrkerstyle
Fai=a

Selmarker Color Gulharker Si

Sas s Snes sy E:
Sossi B
El \r Btr
st il Py THL
TALLMar ke RﬁstlAlU\’IalkEr T'ﬂ"hfu
SRS = =M arkerAttnbuGssttMarkercolor sCurre WtStyl
o= tmtas

T Ras S ar karALL b aL

TArray

rgrsa

Sotar

—TArray EEre

Savelneattibidistancato e

-
——
Ry L

flunecolor
SSivi

trillcolor

frasrksrcalor
FimrherSiae

Srrrool A sy
B i

S

=T

Iy

Boundsol
SstAt

st
GstA

- Str ml

e s

Smeraters Outo Soins sEmc-r operatar=

e

e

Lo

TH1
TArrayF

rOmsaL

i

oy GLLV\Aurrv|F-2LluDr-awhlurr' Sl
Sel o

Wnsam,

SwPara
)

P,

Brnt

SSthe SSIZERSTNSTE

TArrayF
rgisa Lariay
At
sy
Satara !
SZUAE
SoES e
g -

-— _______ . ..--- - ‘TH 1 F- — .

ratsa

Ssigincentent

DaciFilamarme AddBinContant
Bictionary Class

Class_Mame

Smtimeritn

Sedrieline

http://root.cern.ch/drupalicontent/architectural-overview

Sept. 6th, 2010

"10

7

Resources for self-help

simple arrays to spectrum analyzers. Knowing all of
them by heart is not easy.

Extensive additional documentation is provided in the
website:

User's Guide
Tutorials

tl. L 4, "pusFy; SR =
H T] ne | WhatsNew | About | Screenshots | Download | Documentation Support | Forum | Developers
OW O S rchitectural Overvi
FAQ's [i
~

HowT:
Screenshots _

Get a taste of ROOT's capabilities by Go ahead and T e Set the inside scoop on

camnllnn snme srreenshnts ROOIT Alen =search the

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "10 8

First steps into ROOT

SROOTSYS is set and so are $PATH and
$LD LIBRARY_ PATH

Typing “root” at the shell will get you to:
root [0]
Welcome to the CINT, the ROOT C++ interpreter!

t is not a compiler, executes commands right away
t has auto-completion features and other amenities

t is less stable than you'd like it to be (

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 9

Hello World 1/ 4

root [0] cout << << endl;
Hello World!

cout and << are the commands in the standard C++
namespace for printing out to std output.

Hello world example 1.1 — char][] variable

root [1] char hwrld_c[12] =

root [2] cout << hwrld_c << endlI;
Hello World!

Here we declared an array of 12 chars, initializing it to
"Hello World!", and printed it.

G.Giavitto - ROOT tutorial @ ScInEGHE

Sept. 6th, 2010 "10 10

Hello World 2/ 4

root [3] TString hwrld_s = :

root [4] cout << hwrld_s << endlI;
Hello World!

root [5] Int_t len = hwrld_s.Length();

root [6] cout << len << endl;
12

Here we used the built-in ROOT TString class.

As you can see the instance of the TString is called
hwrld_s , and one of its methods is Length(), which
returns an integer.

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 11

Hello World 3/ 4

root [10] TPaveLabel hwrid_p(—
TPavelLabel TPaveLabel()

TPavelLabel TPaveLabel(Double_t x1, Double t y1, Double t
x2, Double_t y2, const char” label, Option_t* option = "br")

TPavelLabel TPavelLabel(const TPavelLabel& pavelabel)

root [11] TPaveLabel hwrid_p(0.3,0.3,0.7,0.7,
:)
root [12] hwrld_p.Draw();

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 12

Hello World 3/ 4

In this last example, we
first declared an instance
to the class TPavelLabel

With the command (...)
we constructed it

Hello World
As before, the methods of

this instance are called
with ”.”

Since this is a graphical
class, CINT has N
automatically spawned a TCanvas where to draw.

You can play with your mouse over it now and change it.
G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 10 13

Hello World 4 / 4 : the macro

myMacro.cxx

void myMacro(){
cout << << endl;

}

Then, you can run it from inside CINT:

root [14].x myMacro.cxx
Or directly from the shell:

$ root -q -b myMacro.cxx

Will give you the ability of reviewing your work as you go. -

g and -b mean "quiet” and "batch”.

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 14

Hello World 4 / 4 : the macro

myMacro2.cxx

Int_t myMacro2(int_t k=0){
cout << "The input is " << k << endl;
return k;

}

Double t anotherFunc(int_t j=0){
Double t pp = 2*TMath::ACos(-1);
Double t x = 1.5% + pp*myMacro2(j);
return Xx;

}

To be able to use anotherFunc, load the macro,

root [] .L myMacro.cxx |
G.Giavitto - ROOT tutorial @ ScInEGHE

Sept. 6th, 2010 10

15

Variable Types in ROOT

Basic types: capitalised and have suffix “ t":
int > Int_t float —» Float_t double — Double_t

Names of classes start with “T”:
TH1F, TF1, TString, TDirectory, TFile, TTree...

Some ROOT types (classes):

TH1F - Histogram, containing Float_t objects (floats)
TString — String container

TF1 — 1-dimensional function, TF2, ...

TTree — can store per-event info

see http://root.cern.ch/root/ntml/ListOfTypes.html

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 16

C++ operations within ROOT

root [0] Int_t a;

root [1] a = 5.1;

root [2] cout << << a << endl;
a=39%
root [3] Double_t b;

root [4] b = 5.1;

root [5] cout << << b << endl;
b=5.1

Loops and controls: e.g. for loop with if/else
for (Int_ti=1;i<10; i++){

if (1%2==0) cout <<i<< << endl;
else cout << j << << endl;
}

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 17

C++ operations within ROOT

root [] Int_t billy[5] = {16, 2, 77, 40, 12071 };

0 1 2 3 1
billy | 16 | z | 77 | 40 | 12071 |

root [] Int_t jimmy[3][5];

1 2 3 4

jimmy

jiT""Y‘[Fll [31
Pointers and dynamic memory:

root [] Float_t *bobby; // this is a pointer
root [] Int_t narr = 100;

root [] bobby = new Float_t [narr]; Float_t

bobby X

(Float_t*)0x8f1adc8 | A
G.Giavitto - ROOT tutorial @ ScInEGHE ¥

Sept. 6th, 2010 10

18

C++ resources

‘course’:
C++ for ROOT users, from FNAL:

Standard template library (advanced stuff):

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 19

Functions: TMath and TF1

TMath class. You can call them directly:

root [] TMath::TanH(1)
(Double_t)7.61594155955764851e-01

You can also define your own functions, using TF1:

rOOt [] TF1 *f([_[01"TMath::Gaus(x,[11,[2])*[3] TMath::Landau(x,[4].15
= new TF1(,

0.0,10.0);

root [] f->SetParameters(1.0,2,0.5,4,5,1);
root [] f->Draw()

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 20

More math niceties

TRandom class and its dauhters:

root [TRandom3 rnd;
root [] rnd.SetSeed(123456);
root [] rnd.Poisson(3.4)
(Int_t)2

root [] f->GetRandom(0.0,10.0)
(Double t)2.08103799934920897e+00

Physics vectors used to represent spacetime vectors and
their transformations:

root [] TVector3 r(1,0,0);

root [] r.Rotate(TMath::Pi()/6.0,TVector3(0,1,0));
root [] cout << r.Z() << endl;

-0.5

root [] TLorentzVectoritd(IROD }utorial @ ScinEGHE
Sept. 6th, 2010 10 21

Histograms: TH1

THA1::Fill(val) fills the histogram with an entry
TH1::SetBinContent(bin,val) sets the bin conten

It also stores the expected error for each bin.

TH1D *h = new TH1D(: ,90,0,10);

for (Int_t i=0; i<1e6 ; i++){
h->Fill(f->GetRandom(0,10));
}

h->FillRandom(,1e6); // equivalent
Then we can display it, and fit it as well!

h->Draw() G.Giavitto - ROOT tutorial @ ScINEGHE
Sept. 6th, 2010 10 22

Fitting histograms

distribution. The method is Fit().

TFitResultPtr fres1 =

h->Fit(: ,0,3);
TFitResultPtr fresZ s

h->Fit(, 9","".3,10);

Double_t pars[6];
for (Int_t i =0;i<3;i++) {
pars|i] = fres1.Get()->GetParams()[i];
pars[i+3] = fres2.Get()->GetParams()[i];
}
TF1 *f2 = new TF1(: ,0,10);
f2->SetParameters(pars);
h->Fit(f2,"","",0,10);

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 23

Fitting an Histogram: GUI

r| Eile Edit Miew Options Tools Help Diata Set |TH1D::test h Ll
I i test_h : :
r | Test Histogram - a 355055 —F-Il—tFulnl:tlnn
d| 14000= Mean 4.731 R P rocer- 10 [gaus =
. B RIMS 2.202 Operation
B % I ndf 36.31/ 44 ’7f“ Mop & add & Cony
T = po 1.369e+04 + 5.906e+01
r 12000_— p1 2.003 + 0.002 |gaus[ﬂ)+|andau(3}
I L p2 0.5039 £ 0.0018 Salected:
r - p3 5.528e+04 £ 1.842e+02
< 10000 __ 4.995 + 0.005 A% =et Parametars
0.9988 £ 0.0042
d - General | Minimization |
8000 — -~ Fit Settings
B Methad
— Chi-square - zer-mefined..
6000 — T =
— [Linear fit
— Robust: I 1.00 :I ™ Mo Chi-sguare
4000 — Fit Options
L [Integral [Use range
2["]0_— [~ Eest errors [Improve fit results
— [&l weights = 1 [Add o list
B | | | | | | | | | [Empty bins, weights=1 [Use Gradient
R R T 5 6 7 8 9 10 Srew Optons
[SAME
[Mo drawing
EDM=3.084693e-10 STRATEGY= 1 ERROR MATRIX UNCER1 [~ Do not storesdrasy Advanced... |
EXT PARAMETER STEP FIRST
NO. ~ NAME VALUE ERROR SIZE DERIVATIVE | x[ooogfs — 1000/3]
1 p@ 1.36872e+04 5.90625e+01 5.28955e-03 3.0818%e-07
2 pl Z2.00348e+00 2.46293e-03 -7.17375e-08 -2.16040e-0]
3 pZd 5.83935e-01 1.78653e-83 -4.76668e-08 2.03222e-0] Update | Fit | Eeset | Close
4 p3 5.52756e+04 1.84244e+02 1.24429e-02 -1.78931e-01(trp twoin [UBMrmt [MGRED | 0 o
5 p4 4.994672e+00 5.42330e-03 -2.29370e-06 -2.66843e-0:
6 ps 9.98300e-01 4.20360¢-03, ~1.2243%6:06.., L 4339500
Sept. 6th, 2010 10 24

Scatter plots

Int_t n = 20;
Double t x[n], y[n]; // this works only in CINT!!!
for (Int_t i=0; i<n; i++) {

x[i] =i*0.1;
y[i] = 10*TMath::Sin(x[i]+0.2);
}

TGraph *gr1 = new TGraph (n, x, y);
We can draw the graph with these options

gri1->Draw()
gr1->SetMarkerStyle(20);
gr1->Draw();
And also fit it with a polinomial !
gr1->Fit(, " 0.1,1.0);
gr1->Fit(5 6.6Rviko2 HODT tutorial @ ScINEGHE

Sept. 6th, 2010 "10 25

Canvases and Pads

Single TCanvas w/ multiple TPads with TCanvas::Divide

root [TCanvas c1("c1", ,400,300);
root [] c1.Divide(2,3);

root [] c1.cd(4);

root [] TLatex 1(0.1,0.4,);
root [] |.SetTextSize(0.25);

root [] |.Draw();

The objects here are put on the

stack , the part of volatile mem. I“” o
that is discarded when a function)
returns. Does not work in macro.

Use dynamic memory allocation:

operator new and —edalt@aibchﬂ@mtmmEeHE
Sept. 6th, 2010 26

ROOT Files : TFile

and sub-folders.

It can be opened Read-only (default), for writing (NEW), adding
(UPDATE), rewriting (RECREATE):

root [] TFile fO(:);
Once opened is becomes the current directory.

Any ROOT class object deriving from TObject can be written on
the file using TObject::Write(), or Append();

When the file is closed the contained objects are no longer
available to ROOT.

To see what is in a file TFile::GetListOfKeys()::Print()

To retrieve an object from a File, TFile::Get(obj _name)
G.Giavitto - ROOT tutorial @ ScinEGHE —

Sept. 6th, 2010 10 27

Data Structures in ROOT

rows="EVENTS”, columns = "DATA VARIABLES”

ROOT implements this paradigm within a more
powerful interface: the TTree.

Its structure is similar to that of a filesystem: it is
branched, analogously to having directories and sub-
directories, containing files (leaves).

AFlle.roof \) aFilereol

ScInEGHE
Sept. 6th, 2010 10 28

TTrees in more detail

simpler trees (TNtuple) have branches of sigle variables,
reproducing the table paradigm.

A branch may contain:
simple variables;

objects inheriting from TObject;

objects of the TClonesArray class (a collection of objects of the same
class);

a STL container of pointers to objects.

If it is needed a TTree can be saved on different files, and
retrieved in full using one of its derivate classes: TChain

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 29

A very simple Tree

X y 4
-0.676641 0.390352 0.610218

The implementation is easy:

root[] TTree *T = new TTree(:);
root[] T->ReadFile(:);

We can already draw 2-D histograms with cuts:
root [] T->Draw(:);
And save the Tree:

root [] TFile *f = new TFile(,);
root [] T->Write();

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 30

A simple Tree

root [] Float_t x,y,z;

root [] TTree *T2 = new TTree(:

root [] T2->Branch(,&X,)

root [] T2->Branch(&Y,)

root [] T2->Branch(&2z,)
Then we fill it:

root [] ifstream in();

root [] while (1) {
in >> X >>y >> z;

if (!in.good()) break;
T2->Fill(); }

And save It;

root [] T2->Write();

root [] f->Close(); g giavitto - ROOT tutorial @ ScinEGHE
Sept. 6th, 2010 10

Alibe, oo \

31

Reading a TTree from a TFile

root [] TFile f();
root [] .Is

TFile** basic.root
TFile* basic.root
KEY: TTree ntuple;1 ascii data
KEY: TTree ntuple2;1 ascii data

Then create a pointer to the Tree:

root [] TTree *Tr = (TTree*)f.Get();
root [] Tr->GetListOfBranches().Print();

Collection name="TObjArray’, class='"TObjArray', size=16

*Br 0:x : X/F *

*Entries: 1000 : Total Size= 4528 bytes File Size = 3824 *
*Baskets : 1 : Basket Size= 32000 bytes Compression= 1.06 *

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 32

Reading a TTree from a TFile

root [] Float_t x,y,z;

root [] Tr->SetBranchAddress("x",&x);
root [] Tr->SetBranchAddress("y",&y);
root [] Tr->SetBranchAddress("z",&z);

We can then loop over the entries and get them:

root [] TH2D *hz =
new TH2D(, ,40,-5,5,40,-5,5)
root [] Int_t ne = Tr->GetEntries();
root [] for (Int_t i=0; i<ne; i++) {
Tr->GetEntry();
if (z > 2) hz->Fill(x,y);}
root [] hz->Draw();

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 33

Graphical relief

Let's have a look to what we've done:

root [] TBrowser *b = new TBrowser()

E old ROOT Dhject Browser Xk
Eile Xiew Oiption Help r
| (L3 Current dir j Egl",,'g- i | |e| ﬂl Opiia I :I' v
| &I Folders | Contents of ™" C/
_droot [CROOT_tutorialScineGHE2010 [C]FROOF Sessions [(JROOT Files -1
[LIPROOF Sessions Croat L
_momelgianlucasDrophboxiDocur D/
__JROOT Files

KN I— il

|? Obijects. | i

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 34

Graphical relief |l

Go to the TTree , Right Click, Start Viewer.

. : : 1HESVIEWEI | m— L ﬂelp 'i_b(or‘e_so
s St H1 Dipleus Belp | option | -] root/1ib/1libCore.so
Command | | Option IIegn | Histogram Ihtemp [~ Hist [Scan v Rec /11bRint.so
“I-| Current Falder Current Tree : ntuple
[ATreeList ko B S, -
- bl tuple
- J %F Eile Edit Wiew Options Tools
3 Z 1 -empty- &2
@Scaﬂbox
| ECy -empty-
B -empty-
E¢ Y -empiy-
E¢ Y -empty- .
B -empty- 12+
; E¢ Y -empiy-]
E¢ Y -empty- 10 1
E< 3 -emnpty- 8 |
E¢ Y -empiy- E
S E¢ Y -empty- B__
L seoee| @] &] 4
2_'
IList | OList | | Content -y M .
ETR— 2 o
|E Obijects. |ntuple J’a
: x
You are using the old ROOT browser! A new
Select the "New Browser" entry from the "f ;
"Browser.Name:" from "TRootBrowserLite" t 54 3
File name : has<ic. ront —
Sept. 6th, 2010 "10 35

Using a class to fill a TTree

down exactly to our analysis needs.
First we need to declare the class:

file class_tree.C:
class TrackPoint : public TObject {
public:
Float_t x,y,z;
TrackPoint() { x=0;y=0;z=0;}
ClassDef(TrackPoint,1)
b
Then we can write the function body, which is much
like what we did before.

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 36

The macro body

Classimp(TrackPoint)
void class_tree()

{

}

TFile *f = new TFile(
TTree *T = new TTree(

:);

TrackPoint *tp = new TrackPomt()

T->Branch(,&tp);
ifstream in(
while (1) {

);

in >> tp->x >> tp->y >> tp->z ;

if (!in.good()) break;
T->Fill();
}
T->Write();
f->Close();

Sept. 6th, 2010

G.Giavitto - ROOT tutorial @ ScInEGHE
"0

class defin.

TFile and
TTree

Declare class
Branch Tree
Read in values
Fill Tree

Write and
Close

37

Running as compiled-in

- il J

declared a class derived add to the top of
from a compiled one, it is class tree.C:
necessary to run the macro

: #include
as compiled code. .
This will produce a lot of #include

#include <iostream>

errors because we did not #include <fstream>

iInclude the proper libraries.
(Interpreted CINT has that using namespace std;

done automatically) Then run it with:

- | rootll.x class_tree.C+
G.Giavitto - ROOT tutorial @ ScInEG -

Sept. 6th, 2010 10 38

Reading the Tree (again?)

It is sufficient to replace e.g. x with tp.x :

root [] TFile f()
Warning in <TClass::TClass>: no dictionary for class

TrackPoint is available

root [] TTree *Tr = (TTree*)f.Get()
root [] Tr->Draw(: :)
root [] Tr->Draw(: :)

It is also possible to copy the class definition onto another
script and analyze the data.

What if you don't have info on how the Tree was created,

which classes were declared?

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 39

The TSelector framework

It is able to recreate the classes it was created with:

root [] Tr->MakeSelector()
Info in <TTreePlayer::MakeClass>: Files: points.h and
points.C generated from TTree: points

The two files generated must now be modified to fit our needs.
A detailed walkthrough is found on

root [] Tr->Process(); llor
root [] Tr->Process();

This harnesses the full power of ROOT.

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 40

Hands — On session: goals

Review the examples

Learn how to use well the documentation provided at
root.cern.ch and elsewhere.

Read into a TTree the data produced by the previous

Geant 4 simulation.
(Probably will need $ROOTSY S/tutorials/tree*.C)

Quick-check the TTree with GUI.

From it, construct an analysis environment with
TSelector, and run it.

G.Giavitto - ROOT tutorial @ ScInEGHE
Sept. 6th, 2010 "0 41

