Gamma-Ray Telescopes

Pair Production Telescopes
EGRET/Fermi

- 0.1 - 100 GeV
- Space-Based (small area)
- Background free
- Large Aperture/High Duty Cycle
- All-sky survey & monitoring
- Extra-Galactic (AGN, GRB)
- Diffuse emission
- Dark matter

Atmospheric Cherenkov Telescopes
H.E.S.S./VERITAS/MAGIC

- 50 GeV - 100 TeV
- Large Area
- Excellent background rejection
- Small Aperture/Low Duty Cycle
- Study known sources
- Deep surveys of limited regions
- Source morphology (SNRs)
- Fast transients (AGN flares)
- High resolution spectra
- Dark matter

Particle Detection Arrays
Milagro/Tibet/ARGO

- 100 GeV - 100 TeV
- Large Area
- Good background rejection
- Large Aperture & Duty Cycle
- Partial sky survey & monitoring
- Extended Sources
- Transients (GRBs, AGN flares)
- Highest Energies (>10 TeV)
Science Goals of a Wide-Field Instrument

• Galactic Cosmic Ray Origins
 – Galactic Diffuse Emission
 – Highest Energies (10 - 100 TeV) for Galactic Sources

• Particle Acceleration in Jets
 – Gamma Ray Bursts at Highest Energies
 – AGN Flaring
 – Multi-wavelength and multi-messenger campaigns

• Complete Survey
 – Discovery potential
 – Alert system
Extensive Air Shower
Gamma Ray Telescopes

- Gamma rays interact in the atmosphere, form particle cascades
 - Particles produce Cherenkov light in water at ground level

- Reconstruct shower direction from timing of PMT hits across the detector

- Most triggers come from cosmic rays (1700 Hz in Milagro, 5 kHz expected in HAWC)

- Field of view ~2 sr

- Duty factor >95%
Extensive Air Shower Arrays

http://www.ast.leeds.ac.uk/~fs/photon-showers.html
Extensive Air Shower Arrays

- gammas
- electrons

1 TeV gamma-ray shower Longitudinal Profile

http://www.ast.leeds.ac.uk/~fs/photon-showers.html
Extensive Air Shower Arrays

• gammas
• electrons

Milagro
Extensive Air Shower Arrays

Milagro

1 TeV gamma-ray shower

Gammas
Electrons

http://www.ast.leeds.ac.uk/~fs/photon-showers.html
From Milagro to HAWC

• The High Altitude Water Cherenkov Observatory

• Redeploy Milagro detectors at Volcán Sierra Negra, México
 - Increase altitude from 2630 m to 4100 m
 - Increase area from 2,400 m² (bottom layer of pond) to 20,000 m²
 - Segment the Cherenkov medium: separate tanks instead of a single pond
 - Better angular resolution and background rejection, lower energy threshold

• Achieve 10-15 x sensitivity of Milagro
 - Detect Crab at 5σ in 6 hours instead of 3 months

• Cost: ~$10M
The HAWC Collaboration

University of Maryland: Jordan Goodman, Andrew Smith, Greg Sullivan, Jim Braun, David Berley

Los Alamos National Laboratory: Gus Sinnis, Brenda Dingus, John Pretz

University of Wisconsin: Teresa Montaruli, Stefan Westerhoff, Segev Ben Zvi, Juanan Aguilar, Dan Wahl

University of Utah: Dave Kieda, Wayne Springer

Univ. of California, Irvine: Gaurang Yodh

Michigan State University: Jim Linnemann, Kirsten Tollefson, Dan Edmunds

George Mason University: Robert Ellsworth

Colorado State University: Miguel Mustafa, Dave Warner

University of New Hampshire: James Ryan

Pennsylvania State University: Tyce DeYoung, Patrick Toale, Kathryn Sparks

University of New Mexico: John Matthews, William Miller

Michigan Technical University: Petra Hüntemeyer

NASA/Goddard Space Flight Center: Julie McEnery, Elizabeth Hays, Vlasis Vasiloudou

Georgia Institute of Technology: Ignacio Taboada, Andreas Tepe

HAWC Technical Staff: Michael Scheinder, Scott Delay

Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE): Alberto Carramiñana, Eduardo Mendoza, Luis Carrasco, William Wall, Daniel Rosa, Guillermo Tenorio Tagle, Sergey Silich

Universidad Nacional Autónoma de México (UNAM): Instituto de Astronomía: Octavio Valenzuela, Vladimir Avila-Reese, Marco Martos, Maria Magdalena Gonzalez, Sergio Mendoza, Dany Page, William Lee, Hector Hernández, Deborah Dultzín, Erika Benitez

Instituto de Física: Arturo Menchaca, Rubén Alfaro, Varlen Grabski, Andrés Sandoval, Ernesto Belmont, Arnulfo Muñoz-Davlos

Instituto de Ciencias Nucleares: Lukas Nellen, Gustavo Medina-Tanco, Juan Carlos D’Olivo

Instituto de Geofísica: José Valdés Galicia, Alejandro Lara, Rogelio Caballero

Benemérita Universidad Autónoma de Puebla: Humberto Salazar, Arturo Fernández, Caupatitío Ramirez, Oscar Martínez, Eduardo Moreno, Lorenzo Diaz, Alfonso Rosado

Universidad Autónoma de Chiapas: Cesar Álvarez, Eli Santos Rodríguez, Omar Pedraza

Universidad de Guadalajara: Eduardo de la Fuente

Universidad Michoacana de San Nicolás de Hidalgo: Luis Vilaseñor, Humberto Cotti, Ibrahim Torres, Juan Carlos Arteaga Velázquez

Centro de Investigación y de Estudios Avanzados: Arnulfo Zepeda

Universidad de Guanajuato: David Delépine, Gerardo Moreno, Edgar Casimiro Linares, Marco Reyes, Luis Ureña, Mauro Napsuciale, Victor Mijene
Pico de Orizaba, altitude 4100 m, latitude 18° 59’ N
Two hours drive from Puebla, four hrs from México City
Site of Large Millimeter Telescope (infrastructure exists)
HAWC

Pico de Orizaba, altitude 4100 m, latitude 18° 59’ N
Two hours drive from Puebla, four hrs from México City
Site of Large Millimeter Telescope (infrastructure exists)
HAWC Site Location

- Latitude (19° N) gives access to over 1/2 the sky
 - 40% overlap with HESS Galactic Plane survey
 - 90% overlap with IceCube
- Longitude (97° W) gives simultaneity with
 - VERITAS
 - Pan-American Observatories

- Crab Nebula transits 3° from zenith
- Galactic Center visible at 48° zenith angle
HAWC

Array composed of 300 large steel water storage tanks
Plastic bladder (water in, light out) - non-reflective surfaces
7.3 m diameter 4.5 m height
Close-pack array (~1-2m spacing of tanks)
Design

- 300 large steel water tanks
- ~20,000 m² array area
- >60% of area instrumented
Design

- Each tank instrumented with 3 upward facing 8” PMTs
- 900 PMTs total
- Interior surfaces non-reflecting (maintain timing integrity)
HAWC Detectors

- Steel cylinders with liners, assembled in place
 - Light-tight, black plastic bladder to hold water
 - Water filtered and demineralized during fill
 - 3 upward looking PMTs with <1 ns time resolution

- 900 8” Hamamatsu PMTs and most electronics re-used from Milagro
Hadron Rejection

Algorithm looks for high-amplitude hits more than 40 m from the reconstructed core location.
Hadron Rejection

Algorithm looks for high-amplitude hits more than 40 m from the reconstructed core location
Hadron Rejection

Algorithm looks for high-amplitude hits more than 40 m from the reconstructed core location.
Gamma-Hadron Separation

- Parameter $C = \frac{n\text{Hit}}{\text{cxPE}}$ (\text{cxPE} = \text{largest nPEs >40m from core})
- $\sim 10x$ better rejection than Milagro

\begin{align*}
\text{Median Energy} &= 1.5 \text{ TeV} \\
\text{Median Energy} &= 20 \text{ TeV}
\end{align*}

G-H separation at 50% gamma efficiency
Energy Threshold and Effective Area

• Higher altitude leads to a lower energy threshold
 - Shower fluctuations (depth of first interaction) lead to soft threshold

• HAWC will be fully efficient above ~2 TeV
 - Still >100 m² effective area at 100 GeV

• Relative improvement even more significant after hadron cuts
Energy Resolution

• Uncertainty from two sources:
 - Measurement of energy deposited at ground level
 - Fluctuations in shower development in atmosphere (naturally log-normal)

• Higher elevation closer to shower max
 - Comparable resolution at ~1/10 the energy of Milagro
 - HAWC resolution approaches limit from shower fluctuations

Resolutions are log-normal:
50% resolution indicates 1σ range [.67,1.5] times measured value
Angular Resolution

- Significant increase over Milagro – limited by information in the particles that reach the ground
 - Based on Milagro algorithms – improvements possible (esp. at higher E)
Sensitivity to Point Sources

- Long integration times (1000 hrs/year)
 - excellent sensitivity at highest energies (> few TeV)

- 5σ sensitivity to
 - 10 Crab in 3 min
 - 1 Crab in 5 hr
 - 0.1 Crab in $\frac{1}{3}$ year

- 10-15x Milagro sensitivity
 - Lower energy threshold
 - Improved angular resolution
 - Improved energy resolution
 - Improved CR rejection
Measuring Spectra at the Highest Energies

- **HESS J1616-508**
 - 0.2 Crab @ 1 TeV, $\alpha=-2.3$
 - Highest energy ~20 TeV
Measuring Spectra at the Highest Energies

- **HESS J1616-508**
 - 0.2 Crab @ 1 TeV, $\alpha=-2.3$
 - Highest energy ~20 TeV

- Simulated HAWC data for 1 year with no cutoff
Measuring Spectra at the Highest Energies

- **HESS J1616-508**
 - 0.2 Crab @ 1 TeV, $\alpha=-2.3$
 - Highest energy ~20 TeV

- Simulated HAWC data for 1 year with no cutoff

- ...or with a 40 TeV exponential cutoff
Transient Sensitivity
Assumed E^{-2} emission spectrum
Full HAWC simulation (5 σ or 10 photons)
Fermi-LAT assumed 0.8 m^2 effective area, no background
Sensitivity to High Energy Transients

- Fermi observation of GRB 090510 (z = 0.9) in GBM and LAT

- Simulated HAWC light curve assuming extension of spectrum with LAT index
 - EBL absorption included
 - Cosmic ray background included

- ~200 events expected above 30 GeV

- Detection (5σ) by HAWC if emission extended to 50 GeV
HAWC Construction Schedule

- **VAMOS**
 - Verification Assessment Measuring Observatory Subsystems (3 months)

- **HAWC-30**
 - Implementation of all subsystems (complete 2011)

- **HAWC-100**
 - Science operations with 2 times Milagro’s sensitivity (complete 2012/13)

- **HAWC-300**
 - Full detector (complete 2014)
HAWC Construction Schedule

- Verification Assessment Measuring Observatory Subsystems (3 months)
- Implementation of all subsystems (complete 2011)
- Science operations with 2 times Milagro's sensitivity (complete 2012/13)
- Full detector (complete 2014)
HAWC Construction Schedule

- VAMOS Verification Assessment Measuring Observatory Subsystems (3 months)
- HAWC-30 Implementation of all subsystems (complete 2011)
- HAWC-100 Science operations with 2 times Milagro’s sensitivity (complete 2012/13)
- HAWC-300 Full detector (complete 2014)
HAWC Construction Schedule
HAWC Construction Schedule
HAWC Construction Schedule
HAWC Construction Schedule

- **VAMOS**
 - Verification Assessment Measuring Observatory Subsystems (3 months)

- **HAWC-30**
 - Implementation of all subsystems (complete 2011)

- **HAWC-100**
 - Science operations with 2 times Milagro’s sensitivity (complete 2012/13)

- **HAWC-300**
 - Full detector (complete 2014)
HAWC Status

• Evolution of Milagro: altitude, size, optical isolation
 - ~10-15x sensitivity of Milagro
 - Straightforward design

• Funding approved by NSF, DOE in US and by CONACyT in México
 - Site is approved for our use
 - 7 detector array (VAMOS) under construction, first detector operational
 - Plan for operation with 100 detectors in 2012
 - Full array of 300 detectors operational by 2014

• Wide field of view and high duty cycle at 100 GeV – 100 TeV
 - Excellent discovery potential
 - Complement to other current and future instruments