The Indirect Search for Dark Matter from the centre of the Galaxy with the Fermi/LAT

Aldo Morselli
INFN Roma Tor Vergata
on behalf of the Fermi Large Area Telescope Collaboration
Trieste, Sept 10 2010

Aldo Morselli, INFN Roma Tor Vergata

Attacking the Galactic Center
Spectral lines:
No astrophysical uncertainties, good source id, but low statistics

Galactic center:
Good statistics but source confusion/diffuse background

Satellites:
Low background and good source id, but low statistics

Milky Way halo:
Large statistics but diffuse background

Search Strategies

And electrons!
and
Anisotropies

Galaxy clusters:
Low background but low statistics

Extra-galactic:
Large statistics, but astrophysics, galactic diffuse background

Trieste, Sept 10 2010 Aldo Morselli, INFN Roma Tor Vergata
Milky Way Dark Matter Profiles

DM density profile fundamental for indirect gamma-ray detection

DM distribution not experimentally known in the GC region

$$\rho(r) = \rho_\odot \left[\frac{r_\odot}{r} \right]^\gamma \left[\frac{1 + (r_\odot/r_s)\alpha}{1 + (r/r_s)\alpha} \right]^{(\beta-\gamma)/\alpha}$$

<table>
<thead>
<tr>
<th>Halo model</th>
<th>α</th>
<th>β</th>
<th>γ</th>
<th>r_s in kpc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cored isothermal</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Navarro, Frenk, White Moore</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Einasto</td>
<td>$\alpha = 0.17$</td>
<td></td>
<td></td>
<td>$r_s = 20$ kpc $\rho_s = 0.06$ GeV/cm3</td>
</tr>
</tbody>
</table>

A.Lapi et al. arXiv:0912.1766

All profiles are normalized to the local density 0.3 GeV cm$^{-3}$ at the Sun's location $r \approx 8.5$ kpc
Different spatial behaviour for decaying or annihilating dark matter

The angular profile of the gamma-ray signal is shown, as function of the angle θ to the centre of the galaxy for a Navarro-Frenk-White (NFW) halo distribution for decaying DM, solid (red) line, compared to the case of self-annihilating DM, dashed (blue) line.

G. Bertone et al. 2007, JCAP 11, 003B
Differential yield for each annihilation channel

- Quite distinctive spectrum (no power-law)
- Solid lines are the total yields, while the dashed lines are components not due to π^0 decays

WIMP mass=200GeV

Differential yield for $b\bar{b}$ for different neutralino mass.

Search for Dark Matter in the Galactic Center

• Steep DM profiles ⇒ Expect large DM annihilation/decay signal from the GC!

• Good understanding of the astrophysical background is crucial to extract a potential DM signal from this complicated region of the sky:

 • source confusion: energetic sources near to or in the line of sight of the GC

 • diffuse emission modeling: uncertainties on the intensity and spectra of the CRs and distribution of gas and radiation field targets along the line of sight
Fermi LAT Observations of the GC

• Extragalactic Diffuse modelled as an isotropic $+3^\circ$ emission with a template spectrum.
• Red and blue profiles do not include point sources
• The diffuse gamma-ray intensity in the GC region is intense & not dominated by the GC region
• Systematic uncertainties in the GC contribution remain large, interstellar radiation and gas

S. Digel, Fermi Symp, Fermi LAT Coll. in preparation
Preliminary Analysis

7° x 7° Region Of Interest centered at RA=266.46° Dec=-28.97°
- 11 months of data
- events from 400 MeV to 100 GeV
- IRFs Pass6_v3
- Diffuse Class events, converting in the front part of the tracker
- Model of the Galactic Center includes:
 - 11 sources from Fermi 1st year Catalog (inside or very near the ROI)
 - Galactic and Extragalactic Diffuse Background
- Binned likelihood analysis using the GTLIKE tool, developed by the Fermi/LAT collaboration
Spectrum \((E > 400 \text{ MeV}, 7^\circ \times 7^\circ \text{ region centered on the Galactic Center analyzed with binned likelihood analysis})\)

- Preliminary data (stat. error)
- Best diffuse model and isotropic emission
- 12 Fermi 1 year catalog sources

GC Residuals
7°×7° region centered on the Galactic Center
11 months of data, E >400 MeV, front-converting events analyzed with binned likelihood analysis

- The systematic uncertainty of the effective area (blue area) of the LAT is ~10% at 100 MeV, decreasing to 5% at 560 MeV and increasing to 20% at 10 GeV

![Graph showing GC Residuals](image-url)
Model generally reproduces data well within uncertainties. The model somewhat under-predicts the data in the few GeV range (spatial residuals under investigation).

Any attempt to disentangle a potential dark matter signal from the galactic center region requires a detailed understanding of the conventional astrophysics and instrumental effects.

More prosaic explanations must be ruled out before invoking a contribution from dark matter if an excess is found (e.g. modeling of the diffuse emission, unresolved sources,).

Analysis in progress to updated constraints on annihilation cross section.