

Constraining Decaying Dark Matter with FERMI LAT gamma-rays

Luca Maccione (DESY, Hamburg) (in collaboration with: <u>Le Zhang, Christoph</u> <u>Weniger</u>, Javier Redondo, Guenter Sigl)

SciNeGHE 2010, Trieste, 10.09.2010

Some (well known) basics

Some (well known) basics $n(E, \vec{r}_{\rm obs}) = \int_{0}^{\infty} dt \int d^{3}r_{0} \int dE_{0}q(E_{0}, \vec{r}_{0}, t)f(E, \vec{r}_{\rm obs}; E_{0}, \vec{r}_{0}, t)$ source function propagation probability huge function simplification $\frac{\partial N^{i}}{\partial t} \quad - \quad \nabla \cdot \left(D \nabla - v_{c}\right) N^{i} + \frac{\partial}{\partial p} \left(\dot{p} - \frac{p}{3} \nabla \cdot v_{c}\right) N^{i} - \frac{\partial}{\partial p} p^{2} D_{pp} \frac{\partial}{\partial p} \frac{N^{i}}{p^{2}} = 0$ $= Q^{i}(p,r,z) + \sum c\beta n_{\text{gas}}(r,z)\sigma_{ji}N^{j} - c\beta n_{\text{gas}}\sigma_{\text{in}}(E_{k})N^{i}$ j > i

 $Q^{i}(p,r,z) =$ SNR distribution or DM distribution

Standard flow chart

- CRs diffuse for Myr in the Galaxy.
- Their observables depend much more on the details of propagation than on the source distribution
- Infer and "fix" propagation parameters from CR observations
- Use derived models to estimate DM contributions to observed fluxes and constrain/confirm DM models

<u>Caveats:</u>

- this does not work perfectly with leptons
- there are anyway large uncertainties

Model	δ^1	D_0	R	L	V_c	dV_c/dz	V_a	$h_{\rm reac}$
		$[10^{28} {\rm cm}^2/{\rm s}]$	[kpc]	[kpc]	$[\mathrm{km/s}]$	km/s/kpc	$[\mathrm{km/s}]$	[kpc]
MIN	0.85/0.85	0.048	20	1	13.5	0	22.4	0.1
L1	0.50/0.50	4.6	20	4	0	0	10	4
MAX	0.46/0.46	2.31	20	15	5	0	117.6	0.1

γ-rays and decaying both and decaying both and a start of the start o

odel	δ^1	D_0	R	L	V_c	dV_c/dz	V_a	h_{reac}			
		$[10^{28} { m cm}^2/{ m s}]$	[kpc]	[kpc]	[km/s]	km/s/kpc	[km/s]	[kpc]			
IN	0.85/0.85	0.048	20	1	13.5	0	22.4	0.1			
An	·ibiroton	s are we	20	4	We	will ⁰ con	sider	4			
AX	0.46/0.46	2.31	20	15	5		117.6	. 0.1			
rep	roauce	a dy only			prev	alently	leptor				
astrophysicol models dary/primary (heptophilic) Models at in models at the models at the ptophilic of models at the strophilic of the stro											
models correspond to minimal and maximal primary antiproton fluxes, respectively,											
while the L1 model can provide a good description of B/C, \bar{p}/p and data on other											
secondary/primary ratios above 1 GeV/n.											
¹ Below/above the break in rigidity at $\mathcal{R} = 4$ GV for the MIN. MAX and L1 model.											

... and on g-rays produced via IC scattering (bremsstrahlung is usually subdominant)

DM contribution extends at higher latitudes than astrophysical one

left to right) produced by dark matter particles decaying into e^+e^- pairs, where $m_{\chi} = 200 \text{ GeV}, \tau_{\chi} = 10^{26} \text{ s}$. Results hold for the L1 diffusion model of Tab. 1 and for the NFW halo profile. The lower panel shows the ICS radiation from astrophysical

Response function

L. Zhang, C. Weniger, LM, J. Redondo, G. Sigl, JCAP 1006, 027 (2010) see also L. Zhang, J. Redondo, G. Sigl, JCAP 09(2009), 12

 $e^+e^-
ightarrow \gamma$ via IC scattering and Bremsstrahlung

$$-\mathcal{D}n_{\pm}^{E_0}(\vec{r}, E) = \frac{\rho_{\chi}(\vec{r})}{m_{\chi}\tau_{\chi}}\delta(E - E_0)$$

and compute the associated γ -ray flux $J^{E_0}(\Omega, E_{\gamma})$

Define the response function

 $\chi \to \cdots \to e^+ e^-$

$$F(\Omega, E_{\gamma}; E_0) = \frac{J^{E_0}(\Omega, E_{\gamma})}{J^{\text{obs}}(\Omega, E_{\gamma})} \left(\frac{\tau_{\chi}}{10^{26} \text{ s}}\right) \left(\frac{m_{\chi}}{100 \text{ GeV}}\right)$$

independent of the actual particle physics model one wants to constrain!

plus the 2 sigma error

And compute constraints on DM models by asking

$$\int_{m_e}^{m_{\chi}} dE_0 F(\Omega, E_{\gamma}; E_0) \frac{dN_e}{dE_0} \le \left(\frac{\tau_{\chi}}{10^{26} \text{ s}}\right) \left(\frac{m_{\chi}}{100 \text{ GeV}}\right)$$

Input from particle physics models

Of course the response functions need to be updated whenever new data are available..

Response function: uncertainties

propagation model uncertainties

Solid: based on raw data Dashed: pp gamma-rays subtracted

- ✓ Low energy data affected by large uncertainties
- ✓ High energy (> 100 GeV) data are "safer", BUT have less statistics
- ✓ Better knowledge of the background might improve constraints by a factor ~10.
- ✓ Uncertainties due to DM spatial distribution are negligible

Choosing the optimal patch...

-50

b [degree]

ICS(E_{inj}=1 TeV)/BG, 20-50 GeV, |l|<20 ICS(Einj=1 TeV)/BG, 20-50 GeV, -18<b<-10 Signal/Background 20 -50-150-100-50b [degree] 1 [degree] $ICS(E_{inj}=1 \text{ TeV})/BG, 2-5 \text{ GeV}, |l| < 20$ ICS(E_{ini}=1 TeV)/BG, 2-5 GeV, -18<b<-10 Signal/Back -50 50 -150 100 150 -100b [degree] 1 [degree] $Prompt(E_{line} = 50 \text{ GeV})/BG, 20-50 \text{ GeV}, -18 < b < -10$ $Prompt(E_{line} = 50 \text{ GeV})/BG, 20-50 \text{ GeV}, |l| < 20$ 0.8

0(

-150

-100

-50

0

l [degree]

50

100

150

50

Signal/background map Signal = DM g-rays Background = FERMI data in the range 0.5-1 GeV

Fix model L1

Response function: constraints

So far: particle physics model did not matter Now: take some "definite" model and see the constraints. Need to include final state radiation specific for that model

 $\chi \to \mu^+ \mu^-$

Response function: constraints

blue blob: models allowed by PAMELA positron fraction data

constraint from combined ICS and prompt

constraint from prompt alone

constraint from ICS alone

constraints from pp gamma-ray subtraction

Constraints: comparison

 10^{26}

Papucci & Strumia, 0912.0742

1026

1026

Can exclude the tau channel, but constraint comes from higher energy data, with low statistics (a few events)

Constraints: comparison

Cirelli, Panci, Serpico, 0912.0663

Overall good agreement. The tau channel is constrained only by the isotropic FERMI component, which again suffers from large uncertainties

Conclusions

- We computed response functions of DM originated gamma-rays versus data
- They are independent of the underlying particle physics model
- Simple use: once folded with an electron/positron spectrum from DM they provide immediately a constraint
- Analytical fits are ready and will be available soon
- Extremely useful for the decaying DM analysis: they do not depend on the DM distribution
- Optimal portion of the sky for the constraints: at intermediate latitudes, away from the Galactic Center
- Constraints: not conclusive yet. DM models fitting PAMELA data are still not in conflict with gamma-ray observations. More statistics at high energy (> 100 GeV) might solve the issue.